Fracture behaviour of carbon fibre/epoxy composites interleaved by MWCNT- and graphene nanoplatelet-doped thermoplastic veils
D. Quan (TU Delft - Structural Integrity & Composites)
Chiara Mischo (University College Dublin)
Lucas Binsfeld (University College Dublin)
Alojz Ivankovic (University College Dublin)
Neal Murphy (University College Dublin)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Polyphenylene-sulfide (PPS) veils doped with MWCNTs and graphene nanoplatelets (GNPs) were used as interleaves of a carbon fibre/epoxy composite, aiming to study its effects on the fracture performance. Interlaying original PPS veils significantly improved the mode-I and mode-II fracture toughness of the laminates due to a PPS fibre bridging mechanism. The addition of MWCNTs on the veils improved the PPS fibre/epoxy adhesion by introducing additional interactions, i.e. MWCNT pull-out and breakage, between the PPS fibres and the epoxy during the fracture process. This further improved the fracture toughness of the laminates at a relatively low content of MWCNTs. In contrast, the incorporation of GNPs on the veils decreased the PPS fibre/epoxy adhesion, resulting in detrimental effects on the fracture performance.