Provably-Stable Stochastic MPC for a Class of Nonlinear Contractive Systems
Francesco Cordiano (TU Delft - Team Bart De Schutter)
Mattia Fochesato (ETH Zürich)
L. Huang (ETH Zürich)
B. Schutter (TU Delft - Delft Center for Systems and Control)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
We present a model predictive control framework for a class of nonlinear systems affected by additive stochastic disturbances with (possibly) unbounded support. We consider hard input constraints and chance state constraints and we employ the unscented transform method to propagate the disturbances over the nonlinear dynamics in a computationally efficient manner. The main contribution of our work is the establishment of sufficient conditions for stability and recursive feasibility of the closed-loop system, based on the design of a terminal cost and a terminal set. We focus here on a special class of nonlinear systems that exhibit contractive properties in the dynamics. By assuming this property, we propose a novel approach to efficiently compute the terminal conditions without the need of performing any linearization of the dynamics. Finally, we provide an illustrative example to corroborate our theoretical findings.