The Atmospheric Pressure Capillary Plasma Jet Is Well-Suited to Supply H2O2 for Plasma-Driven Biocatalysis
Tim Dirks (Ruhr-Universität Bochum)
Davina Stoesser (Ruhr-Universität Bochum)
Steffen Schüttler (Ruhr-Universität Bochum)
Frank Hollmann (TU Delft - BT/Biocatalysis)
Judith Golda (Ruhr-Universität Bochum)
Julia E. Bandow (Ruhr-Universität Bochum)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
Plasma-generated H2O2 can be used to fuel biocatalytic reactions that require H2O2 as a cosubstrate, such as the conversion of ethylbenzene to (R)-1-phenylethanol ((R)-1-PhOl) catalyzed by unspecific peroxygenase from Agrocybe aegerita (rAaeUPO). Immobilization is recently shown to protect biocatalysts from inactivation by highly reactive plasma-produced species; however, H2O2 supply by the employed plasma sources (μAPPJ and DBD) is limiting for rAaeUPO performance. This study evaluates a recently introduced capillary plasma jet for suitability to supply H2O2 in situ. H2O2 production is modulated by varying the water concentration in the feed gas, providing a greater operating window for applications in plasma-driven biocatalysis. In a static system after 80 min of biocatalysis, a turnover number of 44,199 mol(R)-1-PhOl mol−1rAaeUPO is achieved without significant enzyme inactivation. By exchanging the reaction solution every 5 min, a total product yield of 122 μmol (R)-1-PhOl is achieved in 700 min run time, resulting in a total turnover number of 174,209 mol(R)-1-PhOl mol−1rAaeUPO. This study concludes that the capillary plasma jet, due to its flexibility regarding feed gas, admixtures, and power input, is well suited for in situ H2O2 generation for plasma-driven biocatalysis tailoring to enzymes with high H2O2 turnover.