Formal synthesis of closed-form sampled-data controllers for nonlinear continuous-time systems under STL specifications
Cees F. Verdier (Hardt Hyperloop)
Niklas Kochdumper (Technische Universität München)
Matthias Althoff (Technische Universität München)
M Mazo Jr. (TU Delft - Team Manuel Mazo Jr)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
We propose a counterexample-guided inductive synthesis framework for the formal synthesis of closed-form sampled-data controllers for nonlinear systems to meet STL specifications over finite-time trajectories. Rather than stating the STL specification for a single initial condition, we consider an (infinite and bounded) set of initial conditions. Candidate solutions are proposed using genetic programming, which evolves controllers based on a finite number of simulations. Subsequently, the best candidate is verified using reachability analysis; if the candidate solution does not satisfy the specification, an initial condition violating the specification is extracted as a counterexample. Based on this counterexample, candidate solutions are refined until eventually a solution is found (or a user-specified number of iterations is met). The resulting sampled-data controller is expressed as a closed-form expression, enabling both interpretability and the implementation in embedded hardware with limited memory and computation power. The effectiveness of our approach is demonstrated for multiple systems.