Sparse Sampling for Inverse Problems with Tensors

Journal Article (2019)
Author(s)

Guillermo Ortiz-Jimenez (Student TU Delft, École Polytechnique Fédérale de Lausanne)

Mario Coutiño (TU Delft - Signal Processing Systems)

Sundeep Prabhakar Chepuri (Indian Institute of Science, TU Delft - Signal Processing Systems)

GJT Leus (TU Delft - Signal Processing Systems)

Research Group
Signal Processing Systems
Copyright
© 2019 Guillermo Ortiz-Jimenez, Mario Coutino, S.P. Chepuri, G.J.T. Leus
DOI related publication
https://doi.org/10.1109/TSP.2019.2914879
More Info
expand_more
Publication Year
2019
Language
English
Copyright
© 2019 Guillermo Ortiz-Jimenez, Mario Coutino, S.P. Chepuri, G.J.T. Leus
Research Group
Signal Processing Systems
Bibliographical Note
Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.@en
Issue number
12
Volume number
67
Pages (from-to)
3272-3286
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

We consider the problem of designing sparse sampling strategies for multidomain signals, which can be represented using tensors that admit a known multilinear decomposition. We leverage the multidomain structure of tensor signals and propose to acquire samples using a Kronecker-structured sensing function, thereby circumventing the curse of dimensionality. For designing such sensing functions, we develop low-complexity greedy algorithms based on submodular optimization methods to compute near-optimal sampling sets. We present several numerical examples, ranging from multiantenna communications to graph signal processing, to validate the developed theory.

Files

Sparse_Sampling_for_Inverse_Pr... (pdf)
(pdf | 1.81 Mb)
- Embargo expired in 15-11-2019
License info not available