A steady-state analytical slope stability model for complex hillslopes
More Info
expand_more
Abstract
This paper presents a steady-state analytical hillslope stability model to study the role of topography on rain-induced shallow landslides. We combine a bivariate continuous function of the topographic surface, a steady-state hydrological model of hillslope saturated storage, and the infinite slope stability assumption to investigate the interplay between terrain characteristics, saturated storage within hillslopes and soil mechanics. We demonstrate the model by examining the stability of nine characteristic hillslope types (landform elements) with three different profile curvatures (concave, straight and convex) and three different plan shapes (convergent, parallel and divergent). For each hillslope type, the steady-state saturated storage corresponding to given recharge rates is computed for three different average bedrock slope angles. On the basis of the infinite slope stability method, the factor of safety (FS) along the hillslopes is determined. Our results demonstrate that in the steep slopes, the least stable situation occurs in hillslopes with convergent plan shapes and concave length profiles, while the convex ones are more stable. In addition to testing our method for nine characteristic hillslope types, a general relationship between plan shape and profile curvature of landform elements and the factor of safety is derived for a pre-defined hillslope length scale. Our results show that slope stability increases when profile curvature changes from concave to convex. In terms of plan shapes, changing from convergent to divergent, slope stability increases for all length profiles. However, we find that the effect of plan shape is more pronounced for convex length profiles. Overall, we demonstrate that, in addition to bedrock slope, hillslope shape as represented by plan shape and profile curvature is an important control on hillslope stability.