A Class of Prediction-Correction Methods for Time-Varying Convex Optimization

Journal Article (2016)
Author(s)

A. Simonetto (TU Delft - Signal Processing Systems)

Aryan Mokhtari (University of Pennsylvania)

Alec Koppel (University of Pennsylvania)

Geert J.T. Leus (TU Delft - Signal Processing Systems)

Alejandro Ribeiro (University of Pennsylvania)

Research Group
Signal Processing Systems
DOI related publication
https://doi.org/10.1109/TSP.2016.2568161
More Info
expand_more
Publication Year
2016
Language
English
Research Group
Signal Processing Systems
Issue number
17
Volume number
64
Pages (from-to)
4576-4591

Abstract

This paper considers unconstrained convex optimization problems with time-varying objective functions. We propose algorithms with a discrete time-sampling scheme to find and track the solution trajectory based on prediction and correction steps, while sampling the problem data at a constant rate of $1/h$, where $h$ is the sampling period. The prediction step is derived by analyzing the iso-residual dynamics of the optimality conditions. The correction step adjusts for the distance between the current prediction and the optimizer at each time step, and consists either of one or multiple gradient steps or Newton steps, which respectively correspond to the gradient trajectory tracking (GTT) or Newton trajectory tracking (NTT) algorithms. Under suitable conditions, we establish that the asymptotic error incurred by both proposed methods behaves as $O({h}^{2})$, and in some cases as $O({h}^{4})$, which outperforms the state-of-the-art error bound of $O(h)$ for correction-only methods in the gradient-correction step. Moreover, when the characteristics of the objective function variation are not available, we propose approximate gradient and Newton tracking algorithms (AGT and ANT, respectively) that still attain these asymptotical error bounds. Numerical simulations demonstrate the practical utility of the proposed methods and that they improve upon existing techniques by several orders of magnitude.

No files available

Metadata only record. There are no files for this record.