Ab initio study of a 2D h-BAs monolayer
A promising anode material for alkali-metal ion batteries
N. Khossossi (Uppsala University, Moulay Ismail University)
Amitava Banerjee (KTH Royal Institute of Technology)
Y. Benhouria (Moulay Ismail University)
Ismail Essaoudi (Uppsala University, Moulay Ismail University)
Abdelmajid Ainane (Uppsala University, Max Planck Institute for the Physics of Complex Systems, Moulay Ismail University)
Rajeev Ahuja (KTH Royal Institute of Technology, Uppsala University)
More Info
expand_more
Abstract
The selection of a suitable two dimensional anode material is one of the key steps in the development of alkali metal ion batteries to achieve superior performance with an ultrahigh rate of charging/discharging capability. Here, we have used state of the art density functional theory (DFT) to explore the feasibility of two dimensional (2D) honeycomb boron arsenide (h-BAs) as a potential anode for alkali-metal (Li/Na/K)-ion batteries. The structural and dynamic stability has been confirmed from the formation energy and the non-negative phonon frequency. The h-BAs monolayer exhibits negative adsorption-energy values of -0.422, -0.321 and -0.814 eV, for the Li, Na, and K-ions, respectively. Subsequently, during the charging process the adsorption-energy increases considerably without an energy-barrier when any of the A-atoms achieve a crucial distance (∼8 Å). In addition, it has been observed that insertion of the mono alkali metal atom into the h-BAs surface results in the semi-conducting nature of the monolayer being transformed into a metallic-state. The low energy barriers for Li (0.522 eV), Na (0.248), and K (0.204 eV) active ion migration imply high diffusion over the h-BAs surface, hence suggesting it has a high charge/discharge capability. Moreover, we have obtained low average operating voltages of 0.49 V (Li), 0.35 V (Na) and 0.26 V (K) and high theoretical capacities of 522.08 mA h g-1 (for Li and Na) and 209.46 mA h g-1 (for K) in this study. The aforementioned findings indicate that a h-BAs monolayer could be a promising anode material in the search for low cost and high performance alkali metal ion batteries.
No files available
Metadata only record. There are no files for this record.