Sensitivity of crossflow surfacetransitionroughnessto free-stream conditions and

Conference Paper (2019)
Author(s)

Paolo Rizzo (Student TU Delft)

J. Serpieri (TU Delft - Aerodynamics)

M. Marios (TU Delft - Aerodynamics)

Research Group
Aerodynamics
Copyright
© 2019 Paolo Rizzo, J. Serpieri, M. Kotsonis
DOI related publication
https://doi.org/10.2514/6.2019-1133
More Info
expand_more
Publication Year
2019
Language
English
Copyright
© 2019 Paolo Rizzo, J. Serpieri, M. Kotsonis
Research Group
Aerodynamics
ISBN (print)
9781624105784
ISBN (electronic)
978-1-62410-578-4
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

The present work is an experimental investigation of stationary crossflow (CF) instability-induced transition of the boundary layer over a 45°swept wing, under varying free-stream turbulence, surface roughness, angle of attack and Reynolds number. Key topological features of the transition front, such as the mean transition location and the jaggedness of the front, are retrieved via IR thermography. Linear Stability Theory (LST) is used to extract the N-factor of the most amplified stationary crossflow mode at the transition location, identified experimentally. Results show clear causality between free-stream turbulence, surface roughness, Reynolds number, angle of attack and transition. Large losses of laminarity and a consistent decrease in the transition N-factor are observed with rising turbulence and roughness. Remarkably, N-factor sensitivity to free-stream turbulence is found to vary significantly and non-linearly with angle of attack for the modest levels of turbulence explored in this campaign, whereas the N-factors scale linearly with the log of the surface roughness level, which is consistent with a receptivity mechanism, which is independent of the angle of attack.

Files

6.2019_1133.pdf
(pdf | 5.1 Mb)
License info not available