A random utility maximisation model considering the information search process

Journal Article (2025)
Author(s)

Gabriel Nova (TU Delft - Transport and Logistics, Universidad de Chile)

C. Angelo Guevara (Universidad de Chile)

S. Hess (TU Delft - Transport and Logistics, University of Leeds)

Thomas O. Hancock (University of Leeds)

Research Group
Transport and Logistics
DOI related publication
https://doi.org/10.1016/j.trb.2025.103264
More Info
expand_more
Publication Year
2025
Language
English
Research Group
Transport and Logistics
Bibliographical Note
Green Open Access added to TU Delft Institutional Repository as part of the Taverne amendment. More information about this copyright law amendment can be found at https://www.openaccess.nl. Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.@en
Volume number
199
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Discrete choice analysis aims to understand and predict decision-makers’ behaviour, a goal that is crucial across several disciplines, including transportation. This type of analysis has relied predominantly on static representations of preferences, principally through the Random Utility Maximisation (RUM) model, due to its ease of implementation, economic interpretability, and statistical formality. However, this model assumes that individuals possess complete information about all attributes of alternatives and that they can process and recall this information instantaneously, which may not align with actual human behaviour. In contrast, the Decision Field Theory (DFT) model from mathematical psychology explicitly incorporates the repeated scrutiny of attributes and recall effects within the decision-making process, which enables it to model attention weights, but lacks microeconomic interpretability and clear statistical parameter identification. This paper introduces the RUM-DFT model, which seeks to integrate strengths of both approaches. Through Monte Carlo simulations, the proposed model is shown to be able to: (i) recover parameters related to the deliberation process, (ii) replicate the dynamic behaviour of utilities during deliberation as observed in practice, (iii) maintain economic interpretability by estimating coefficients that can be used to calculate the marginal indirect utilities, and (iv) highlight the pitfalls of using a RUM model that disregards the true dynamics of data generation process. The SwissMetro case study is employed also to evaluate the RUM-DFT model using a real-world dataset, demonstrating the viability and superior goodness-of-fit of the proposed model.

Files

License info not available
warning

File under embargo until 08-01-2026