Compressed vibration modes of elastic bodies
Christopher Brandt (TU Delft - Computer Graphics and Visualisation)
K. Hildebrandt (TU Delft - Computer Graphics and Visualisation)
More Info
expand_more
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Abstract
The natural vibration modes of deformable objects are a fundamental physical phenomenon. In this paper, we introduce compressed vibration modes, which, in contrast to the natural vibration modes, are localized (“sparse”) deformations. The localization is achieved by augmenting the objective which has the vibration modes as minima by a L1 term. As a result, the compressed modes form a compromise between localization and optimal energy efficiency of the deformations. We introduce a scheme for computing bases of compressed modes by solving sequences of convex optimization problems. Our experiments demonstrate that the resulting bases are well-suited for reduced-order shape deformation and for guiding the segmentation of objects into functional parts.