Linear instability of Poiseuille flows with highly non-ideal fluids

Journal Article (2019)
Author(s)

J. Ren (TU Delft - Energy Technology)

Song Fu (Tsinghua University)

R Pecnik (TU Delft - Energy Technology)

Research Group
Energy Technology
Copyright
© 2019 J. Ren, Song Fu, Rene Pecnik
DOI related publication
https://doi.org/10.1017/jfm.2018.815
More Info
expand_more
Publication Year
2019
Language
English
Copyright
© 2019 J. Ren, Song Fu, Rene Pecnik
Research Group
Energy Technology
Volume number
859
Pages (from-to)
89-125
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

The objective of this work is to investigate linear modal and algebraic instability in Poiseuille flows with fluids close to their vapour-liquid critical point. Close to this critical point, the ideal gas assumption does not hold and large non-ideal fluid behaviours occur. As a representative non-ideal fluid, we consider supercritical carbon dioxide (CO
2) at a pressure of 80 bar, which is above its critical pressure of 73.9 bar. The Poiseuille flow is characterized by the Reynolds number (Re = ρ∗
wu∗
rh∗/μ∗
w), the product of the Prandtl (Pr=μ∗
wC∗
pw/κ∗
w) and Eckert numbers (Ec=u∗
2
r/C∗
pwT∗
w) and the wall temperature that in addition to pressure determine the thermodynamic reference condition. For low Eckert numbers, the flow is essentially isothermal and no difference with the well-known stability behaviour of incompressible flows is observed. However, if the Eckert number increases, the viscous heating causes gradients of thermodynamic and transport properties, and non-ideal gas effects become significant. Three regimes of the laminar base flow can be considered: the subcritical (temperature in the channel is entirely below its pseudo-critical value), transcritical and supercritical temperature regimes. If compared to the linear stability of an ideal gas Poiseuille flow, we show that the base flow is modally more unstable in the subcritical regime, inviscid unstable in the transcritical regime and significantly more stable in the supercritical regime. Following the principle of corresponding states, we expect that qualitatively similar results will be obtained for other fluids at equivalent thermodynamic states.