On the Estimation of Complex Speech DFT Coefficients Without Assuming Independent Real and Imaginary Parts

More Info
expand_more

Abstract

This letter considers the estimation of speech signals contaminated by additive noise in the discrete Fourier transform (DFT) domain. Existing complex-DFT estimators assume independency of the real and imaginary parts of the speech DFT coefficients, although this is not in line with measurements. In this letter, we derive some general results on these estimators, under more realistic assumptions. Assuming that speech and noise are independent, speech DFT coefficients have uniform phase, and that noise DFT coefficients have a Gaussian density, we show theoretically that the spectral gain function for speech DFT estimation is real and upper-bounded by the corresponding gain function for spectral magnitude estimation. We also show that the minimum mean-square error (MMSE) estimator of the speech phase equals the noisy phase. No assumptions are made about the distribution of the speech spectral magnitudes. Recently, speech spectral amplitude estimators have been derived under a generalized-Gamma amplitude distribution. As an example, we will derive the corresponding complex-DFT estimators, without making the independence assumption.

Files