On the Asymptotic Behavior of a Run and Tumble Equation for Bacterial Chemotaxis

More Info
expand_more

Abstract

We prove that linear and weakly nonlinear run and tumble equations converge to a unique steady state solution with an exponential rate in a weighted total variation distance. In the linear setting, our result extends the previous results to an arbitary dimension d≥1 while relaxing the assumptions. The main challenge is that even though the equation is a mass-preserving, Boltzmann-type kinetic-transport equation, the classical $L^2$ hypocoercivity methods, e.g., by J. Dolbeault, C. Mouhot, and C. Schmeiser [Trans. Amer. Math. Soc., 367 (2015), pp. 3807–3828], are not applicable for dimension d≥1. We overcome this difficulty by using a probabilistic technique, known as Harris’s theorem. We also introduce a weakly nonlinear model via a nonlocal coupling on the chemoattractant concentration. This toy model serves as an intermediate step between the linear model and the physically more relevant nonlinear models. We build a stationary solution for this equation and provide a hypocoercivity result.

Files

Evans_yolda_2023_on_the_asympt... (.pdf)
(.pdf | 0.649 Mb)
- Embargo expired in 08-05-2024