Print Email Facebook Twitter On the Potential of 3D Transdimensional Surface Wave Tomography for Geothermal Prospecting of the Reykjanes Peninsula Title On the Potential of 3D Transdimensional Surface Wave Tomography for Geothermal Prospecting of the Reykjanes Peninsula Author Rahimi Dalkhani, A. (TU Delft Applied Geophysics and Petrophysics) Zhang, Xin (University of Edinburgh) Weemstra, C. (TU Delft Applied Geophysics and Petrophysics; Royal Netherlands Meteorological Institute (KNMI)) Date 2021 Abstract Seismic travel time tomography using surface waves is an effective tool for three-dimensional crustal imaging. Historically, these surface waves are the result of active seismic sources or earthquakes. More recently, however, surface waves retrieved through the application of seismic interferometry have also been exploited. Conventionally, two-step inversion algorithms are employed to solve the tomographic inverse problem. That is, a first inversion results in frequency-dependent, two-dimensional maps of phase velocity, which then serve as input for a series of independent, one-dimensional frequency-to-depth inversions. As such, a set of localized depth-dependent velocity profiles are obtained at the surface points. Stitching these separate profiles together subsequently yields a three-dimensional velocity model. Relatively recently, a one-step three-dimensional non-linear tomographic algorithm has been proposed. The algorithm is rooted in a Bayesian framework using Markov chains with reversible jumps, and is referred to as transdimensional tomography. Specifically, the three-dimensional velocity field is parameterized by means of a polyhedral Voronoi tessellation. In this study, we investigate the potential of this algorithm for the purpose of recovering the three-dimensional surface-wave-velocity structure from ambient noise recorded on and around the Reykjanes Peninsula, southwest Iceland. To that end, we design a number of synthetic tests that take into account the station configuration of the Reykjanes seismic network. We find that the algorithm is able to recover the 3D velocity structure at various scales in areas where station density is high. In addition, we find that the standard deviation of the recovered velocities is low in those regions. At the same time, the velocity structure is less well recovered in parts of the peninsula sampled by fewer stations. This implies that the algorithm successfully adapts model resolution to the density of rays. It also adapts model resolution to the amount of noise in the travel times. Because the algorithm is computationally demanding, we modify the algorithm such that computational costs are reduced while sufficiently preserving non-linearity. We conclude that the algorithm can now be applied adequately to travel times extracted from station–station cross correlations by the Reykjanes seismic network. Subject seismic interferometrytransdimensional tomographysurface wave dispersionprobabilistic inversionMarkov chain Monte Carlo To reference this document use: http://resolver.tudelft.nl/uuid:9de8ba77-e430-4513-a3f8-8e452cbdd41d DOI https://doi.org/10.3390/rs13234929 ISSN 2072-4292 Source Remote Sensing, 13 (23), 1-22 Part of collection Institutional Repository Document type journal article Rights © 2021 A. Rahimi Dalkhani, Xin Zhang, C. Weemstra Files PDF remotesensing_13_04929_v2.pdf 14.7 MB Close viewer /islandora/object/uuid:9de8ba77-e430-4513-a3f8-8e452cbdd41d/datastream/OBJ/view