Characterizing Behavioral Differences of Autonomous Vehicles and Human-Driven Vehicles at Signalized Intersections Based on Waymo Open Dataset

More Info
expand_more

Abstract

Autonomous vehicles (AVs) are being introduced to the traffic system with the promise of improving current traffic status. However, the empirical data also indicate contrary effects with estimated higher crash rate and change of crash patterns. Therefore, it is necessary to investigate the driving behavior of AVs and human-driven vehicles (HDVs) in real mixed traffic. Current studies have analyzed the driving behavior of AVs and HDVs, as well as behavioral adaptations of drivers of HDVs based on empirical data. While they play an important role in traffic systems, signalized intersections have not been studied sufficiently in this context. Therefore, this study aims to utilize the Waymo open dataset to characterize and quantify the behavioral differences of AVs and HDVs at signalized intersections. Five parameters of driving behavior related to signalized intersections were characterized according to five critical maneuver phases, which were identified by wavelet transform and threshold-based method. Statistically significant differences in driving behavior between AVs and HDVs were found, from three categorized situations: vehicle approaching the red light/queue, vehicle responding to the green light (as the first vehicle), and vehicle responding to its preceding vehicle (in the queue). Further, behavioral adaptations of HDV drivers were revealed in that they tended to keep closer to the stopped AVs in a queue and to react more strongly to AV start-up maneuvers when the traffic light turns to green.

Files

Wang_et_al_2023_characterizing... (pdf)
(pdf | 2.91 Mb)
- Embargo expired in 04-11-2023
Unknown license