H. Farah
119 records found
1
Detecting abnormal driving behavior is critical for road traffic safety and the evaluation of drivers’ behavior. With the advancement of machine learning (ML) algorithms and the accumulation of naturalistic driving data, many ML models have been adopted for abnormal driving behav
...
As automated vehicles (AVs) become increasingly popular, the question arises as to how cyclists will interact with such vehicles. This study investigated (1) whether cyclists spontaneously notice if a vehicle is driverless, (2) how well they perform a driver-detection task when e
...
Incorporating Behavioral Adaptation of Human Drivers in Predicting Traffic Efficiency of Mixed Traffic
A Case Study of Priority T-Intersections
As automated vehicles (AVs) become more common, it is important to understand how human-driven vehicles (HDVs) would interact with them. This research investigated HDV gap acceptance behavior in mixed traffic with AVs at a priority intersection, focusing on how mixed traffic fact
...
The burgeoning navigation services using digital maps provide great convenience to drivers. Nevertheless, the presence of anomalies in lane-rendering map images occasionally introduces potential hazards, as such anomalies can mislead human drivers and consequently contribute to u
...
Dedicated Lanes (DLs) have been proposed as a potential alternative for the deployment of Connected and Automated Vehicles (CAVs) to facilitate platooning and increase motorway capacity. However, the impact of the presence and utilization policy of such a lane on drivers’ prefere
...
In the driver's mind
Modeling the dynamics of human overtaking decisions in interactions with oncoming automated vehicles
Understanding human behavior in overtaking scenarios is crucial for enhancing road safety in mixed traffic with automated vehicles (AVs). Computational models of behavior play a pivotal role in advancing this understanding, as they can provide insight into human behavior generali
...
The burgeoning navigation services using digital maps provide great convenience to drivers. However, there are sometimes anomalies in the lane rendering map images, which might mislead human drivers and result in unsafe driving. To accurately and effectively detect the anomalies,
...
Sharp curves in freeways are known to be unsafe design elements since drivers do not expect them. It is difficult for drivers to estimate the radius of a curve. Therefore, drivers are believed to use other cues to decelerate when approaching a curve. Based on previous successful
...
eHMI on the Vehicle or on the Infrastructure?
A Driving Simulator Study
Automated vehicles (AVs) may require the implementation of an external human-machine interface (eHMI) to communicate their intentions to human-driven vehicles. The optimal placement of the eHMI, either on the AV itself or as part of the road infrastructure, remains undetermined.
...
The development and integration of automated driving systems in vehicles hold substantial promise for fostering enhanced efficiency, environmental sustainability, and safety in transportation. Notably, at the lower levels of automation (LI, L2), the lane-keeping system emerges as
...
As automated vehicles (AVs) become increasingly popular, the question arises as to how cyclists will interact with such vehicles. This study investigated (1) whether cyclists spontaneously notice if a vehicle is driverless, (2) how well they perform a driver-detection task when e
...
This study utilized Virtual Reality (VR) experiments to investigate pedestrian-autonomous vehicle interaction in shared spaces. In the VR experiment, pedestrians attempt to cross the road under different conditions, including the presence of another pedestrian, different external
...
Towards Developing Socially Compliant Automated Vehicles
State of the Art, Experts Expectations, and A Conceptual Framework
Automated Vehicles (AVs) hold promise for revolutionizing transportation by improving road safety, traffic efficiency, and overall mobility. Despite the steady advancement in high-level AVs in recent years, the transition to full automation entails a period of mixed traffic, wher
...
Effect of eHMI on pedestrian road crossing behavior in shared space with Automated Vehicles
A Virtual Reality study
A shared space area is a low-speed urban area in which pedestrians, cyclists, and vehicles share the road, often relying on informal interaction rules and greatly expanding freedom of movement for pedestrians and cyclists. While shared space has the potential to improve pedestria
...
Detecting abnormal driving behavior is critical for road traffic safety and the evaluation of drivers' behavior. With the advancement of machine learning (ML) algorithms and the accumulation of naturalistic driving data, many ML models have been adopted for abnormal driving behav
...
Autonomous vehicles (AVs) are being introduced to the traffic system with the promise of improving current traffic status. However, the empirical data also indicate contrary effects with estimated higher crash rate and change of crash patterns. Therefore, it is necessary to inves
...
Traffic scenarios in roundabouts pose substantial complexity for automated driving. Manually mapping all possible scenarios into a state space is labor-intensive and challenging. Deep reinforcement learning (DRL) with its ability to learn from interacting with the environment eme
...
This study utilized Virtual Reality (VR) experiments to investigate pedestrian-autonomous vehicle interaction in shared spaces. In the VR experiment, pedestrians attempt to cross the road under different conditions, including the presence of another pedestrian, different external
...
Lane detection serves as a fundamental task for automated vehicles and Advanced Driver Assistance Systems. However, current lane detection methods can not deliver the versatility of accurate, robust, and realtime compatible lane detection in real-world scenarios especially u
...