Incremental Nonlinear Dynamic Inversion and Multihole Pressure Probes for Disturbance Rejection Control of Fixed-Wing Micro Air Vehicles

More Info
expand_more

Abstract

Maintaining stable flight during high turbulence intensities is challenging for fixed-wing micro air vehicles. Two methods have been identified to improve the disturbance rejection performance of the MAV: incremental nonlinear dynamic inversion and phase-advanced pitch probes. Incremental nonlinear dynamic inversion uses the angular acceleration measurements to counteract disturbances. Multihole pressure probes measure the incoming flow angle and velocity ahead of the wing in order to react to gusts before an inertial response has occurred. The performance of incremental nonlinear dynamic inversion is compared to a traditional proportional integral derivative controller with and without the multihole pressure probes. The attitude controllers are tested by performing autonomous wind tunnel flights and stability augmented outdoor flights. This thesis shows that nonlinear dynamic inversion improves the disturbance rejection performance of fixed-wing MAVs compared to traditional proportional integral derivative controllers.