Robust flight control using incremental nonlinear dynamic inversion and angular acceleration prediction

More Info
expand_more

Abstract

This paper presents a flight control strategy based on nonlinear dynamic inversion. The approach presented, called incremental nonlinear dynamic inversion, uses properties of general mechanical systems and nonlinear dynamic inversion by feeding back angular accelerations. Theoretically, feedback of angular accelerations eliminates sensitivity to model mismatch, greatly increasing the robust performance of the system compared with conventional nonlinear dynamic inversion. However, angular accelerations are not readily available. Furthermore, it is shown that angular acceleration feedback is sensitive to sensor measurement time delays. Therefore, a linear predictive filter is proposed that predicts the angular accelerations, solving the time delay and angular acceleration availability problem. The predictive filter uses only references and measurements of angular rates. Hence, the proposed control method makes incremental nonlinear dynamic inversion practically available using conventional inertial measurement units.