Air entrapment modelling in water supply networks during pipe filling events

More Info
expand_more

Abstract

Intermittent water supply systems are prone to air entrapments during the pipe filling phase. This work aims to analyse and discuss the numerical results obtained by applying the recently developed AirSWMM model, an extension of SWMM incorporating air phase, to a laboratory network. Experimental data consisting of pressure-head at multiple locations and video recordings of air entrapments are collected in a single loop network with a high point, for different pipe-filling conditions, system layouts and node elevations. Experimental tests have shown that the air entrapment occurred not only at the high point but also throughout the pipe network, creating air pockets with elongated shapes and larger volumes than for single pipes. AirSWWM model with air-entrapment formation, growth and transport is tested in the pipe network, and results are compared with measurements. AirSWWM model can correctly locate large air pockets but underestimates their volume.