An intelligent leader-follower neural controller in adverse observability scenarios

More Info
expand_more

Abstract

A high-level neural controller for leader-follower flight is presented. State of the art range-based relative localization schemes that rely exclusively on onboard sensors present an additional challenge to the leader-follower control problem since they restrict the flight conditions that guarantee observability. This novel controller was developed over an evolutionary process in which the simulation environment resembled the real-life constraints a group of MAVs would encounter. During the learning stage, a group of three agents is used, where one acts as a leader and flies a random trajectory, and the other two act as followers guided by a candidate controller that dictates the desired velocity commands. In the end, when equipped with the best-evolved controller, the follower agents are able to showcase a successful following behaviour that also enhances the observability of the system, although no observability metric was included in evolution.