Circular Image

G.C.H.E. de Croon

205 records found

CUAHN-VIO

Content-and-uncertainty-aware homography network for visual-inertial odometry

Learning-based visual ego-motion estimation is promising yet not ready for navigating agile mobile robots in the real world. In this article, we propose CUAHN-VIO, a robust and efficient monocular visual-inertial odometry (VIO) designed for micro aerial vehicles (MAVs) equipped w ...

One Net to Rule Them All

Domain Randomization in Quadcopter Racing Across Different Platforms

In high-speed quadcopter racing, finding a single controller that works well across different platforms remains challenging. This work presents the first neural network controller for drone racing that generalizes across physically distinct quadcopters. We demonstrate that a sing ...

MAVRL

Learn to Fly in Cluttered Environments With Varying Speed

Autonomous flight in unknown, cluttered environments is still a major challenge in robotics. Existing obstacle avoidance algorithms typically adopt a fixed flight velocity, overlooking the crucial balance between safety and agility. We propose a reinforcement learning algorithm t ...
Neuromorphic computing shows promise for advancing computing efficiency and capabilities of AI applications using brain-inspired principles. However, the neuromorphic research field currently lacks standardized benchmarks, making it difficult to accurately measure technological a ...

Event-based optical flow on neuromorphic processor

ANN vs. SNN comparison based on activation sparsification

Spiking neural networks (SNNs) for event-based optical flow are claimed to be computationally more efficient than their artificial neural networks (ANNs) counterparts, but a fair comparison is missing in the literature. In this work, we propose an event-based optical flow solutio ...

A review on flapping-wing robots

Recent progress and challenges

This paper analyses the methods and technologies involved in flapping-wing flying robots (FWFRs), where the actuation of the flapping wing produces thrust and lift force that mimics birds’ and insects’ flight. The focus is on the evolution of the flapping-wing technology and the ...
This study covers three aspects of acoustic localisation of drones using a microphone array. First, it assesses a grid-free approach, using differential evolution, to estimate the three-dimensional position of a drone. It is found that this is indeed possible for the drone in the ...
Lightweight aerial swarms have potential applications in scenarios where larger drones fail to operate efficiently. The primary foundation for lightweight aerial swarms is efficient relative localization, which enables cooperation and collision avoidance. Computing the real-time ...
Since every flight ends in a landing and every landing is a potential crash, deceleration during landing is one of the most critical flying maneuvers. Here we implement a recently-discovered insect visual-guided landing strategy in which the divergence of optical flow is regulate ...
The real-world application of small drones is mostly hampered by energy limitations. Neuromorphic computing promises extremely energy-efficient AI for autonomous flight but is still challenging to train and deploy on real robots. To reap the maximal benefits from neuromorphic com ...
Tailsitter aircraft attract considerable interest due to their capabilities of both agile hover and high speed forward flight. However, traditional tailsitters that use aerodynamic control surfaces face the challenge of limited control effectiveness and associated actuator satura ...
Biological sensing and processing is asynchronous and sparse, leading to low-latency and energy-efficient perception and action. In robotics, neuromorphic hardware for event-based vision and spiking neural networks promises to exhibit similar characteristics. However, robotic imp ...
Insects have long been recognized for their ability to navigate and return home using visual cues from their nest's environment. However, the precise mechanism underlying this remarkable homing skill remains a subject of ongoing investigation. Drawing inspiration from the learnin ...
This Review discusses the main results obtained in training end-to-end neural architectures for guidance and control of interplanetary transfers, planetary landings, and close-proximity operations, highlighting the successful learning of optimality principles by the underlying ne ...

Editorial

Special Issue on Advancing Micro Air Vehicle Technologies: Selected Papers from IMAV 2022

Aggressive time-optimal control of quadcopters poses a significant challenge in the field of robotics. The state-of-the-art approach leverages reinforcement learning (RL) to train optimal neural policies. However, a critical hurdle is the sim-to-real gap, often addressed by emplo ...
Heading estimation is vital for the autonomous flight of unmanned aerial vehicles. Magnetometers are typically used for this purpose, but they are not robust to electro-magnetic interferences. As a promising alternative, we investigate the insect-inspired solution of skylight pol ...
Inspired by frame-based methods, state-of-the-art event-based optical flow networks rely on the explicit construction of correlation volumes, which are expensive to compute and store, rendering them unsuitable for robotic applications with limited compute and energy budget. Moreo ...
Navigation is an essential capability for autonomous robots. In particular, visual navigation has been a major research topic in robotics because cameras are lightweight, power-efficient sensors that provide rich information on the environment. However, the main challenge of visu ...
In recent years, Artificial Neural Networks (ANN) have become a standard in robotic control. However, a significant drawback of large-scale ANNs is their increased power consumption. This becomes a critical concern when designing autonomous aerial vehicles, given the stringent co ...