Circular Image

G.C.H.E. de Croon

206 records found

This study covers three aspects of acoustic localisation of drones using a microphone array. First, it assesses a grid-free approach, using differential evolution, to estimate the three-dimensional position of a drone. It is found that this is indeed possible for the drone in the ...

One Net to Rule Them All

Domain Randomization in Quadcopter Racing Across Different Platforms

In high-speed quadcopter racing, finding a single controller that works well across different platforms remains challenging. This work presents the first neural network controller for drone racing that generalizes across physically distinct quadcopters. We demonstrate that a sing ...

A review on flapping-wing robots

Recent progress and challenges

This paper analyses the methods and technologies involved in flapping-wing flying robots (FWFRs), where the actuation of the flapping wing produces thrust and lift force that mimics birds’ and insects’ flight. The focus is on the evolution of the flapping-wing technology and the ...
Tailsitter aircraft attract considerable interest due to their capabilities of both agile hover and high speed forward flight. However, traditional tailsitters that use aerodynamic control surfaces face the challenge of limited control effectiveness and associated actuator satura ...
Neuromorphic computing shows promise for advancing computing efficiency and capabilities of AI applications using brain-inspired principles. However, the neuromorphic research field currently lacks standardized benchmarks, making it difficult to accurately measure technological a ...
Lightweight aerial swarms have potential applications in scenarios where larger drones fail to operate efficiently. The primary foundation for lightweight aerial swarms is efficient relative localization, which enables cooperation and collision avoidance. Computing the real-time ...

Event-based optical flow on neuromorphic processor

ANN vs. SNN comparison based on activation sparsification

Spiking neural networks (SNNs) for event-based optical flow are claimed to be computationally more efficient than their artificial neural networks (ANNs) counterparts, but a fair comparison is missing in the literature. In this work, we propose an event-based optical flow solutio ...

MAVRL

Learn to Fly in Cluttered Environments With Varying Speed

Autonomous flight in unknown, cluttered environments is still a major challenge in robotics. Existing obstacle avoidance algorithms typically adopt a fixed flight velocity, overlooking the crucial balance between safety and agility. We propose a reinforcement learning algorithm t ...
The real-world application of small drones is mostly hampered by energy limitations. Neuromorphic computing promises extremely energy-efficient AI for autonomous flight but is still challenging to train and deploy on real robots. To reap the maximal benefits from neuromorphic com ...
Since every flight ends in a landing and every landing is a potential crash, deceleration during landing is one of the most critical flying maneuvers. Here we implement a recently-discovered insect visual-guided landing strategy in which the divergence of optical flow is regulate ...

Depth Transfer

Learning to See Like a Simulator for Real-World Drone Navigation

Sim-to-real transfer is a fundamental challenge in robot learning. Discrepancies between simulation and reality can significantly impair policy performance, especially if it receives high-dimensional inputs such as dense depth estimates from vision. We propose a novel depth trans ...

CUAHN-VIO

Content-and-uncertainty-aware homography network for visual-inertial odometry

Learning-based visual ego-motion estimation is promising yet not ready for navigating agile mobile robots in the real world. In this article, we propose CUAHN-VIO, a robust and efficient monocular visual-inertial odometry (VIO) designed for micro aerial vehicles (MAVs) equipped w ...

Editorial

Special Issue on Advancing Micro Air Vehicle Technologies: Selected Papers from IMAV 2022

In recent years, Artificial Neural Networks (ANN) have become a standard in robotic control. However, a significant drawback of large-scale ANNs is their increased power consumption. This becomes a critical concern when designing autonomous aerial vehicles, given the stringent co ...
Unmanned air vehicles (UAVs) have traditionally been considered as "eyes in the sky", that can move in three dimensions and need to avoid any contact with their environment. On the contrary, contact should not be considered as a problem, but as an opportunity to expand the range ...
Developing optimal controllers for aggressive high-speed quadcopter flight poses significant challenges in robotics. Recent trends in the field involve utilizing neural network controllers trained through supervised or reinforcement learning. However, the sim-to-real transfer int ...
Navigation is an essential capability for autonomous robots. In particular, visual navigation has been a major research topic in robotics because cameras are lightweight, power-efficient sensors that provide rich information on the environment. However, the main challenge of visu ...
Biological sensing and processing is asynchronous and sparse, leading to low-latency and energy-efficient perception and action. In robotics, neuromorphic hardware for event-based vision and spiking neural networks promises to exhibit similar characteristics. However, robotic imp ...

Optical flow-based control for micro air vehicles

An efficient data-driven incremental nonlinear dynamic inversion approach

This paper proposes an innovative approach for optical flow-based control of micro air vehicles (MAVs), addressing challenges inherent in the nonlinearity of optical flow observables. The proposed incremental nonlinear dynamic inversion (INDI) control scheme employs an efficient ...
Accurate trajectory tracking with quadrotors is a challenging task that requires a trade-off between accuracy and complexity to run onboard. Stateof- the-art adaptive controllers achieve impressive trajectory tracking results with slight performance degradation in varying winds o ...