GT
Guangzhi Tang
3 records found
1
Event-based optical flow on neuromorphic processor
ANN vs. SNN comparison based on activation sparsification
Spiking neural networks (SNNs) for event-based optical flow are claimed to be computationally more efficient than their artificial neural networks (ANNs) counterparts, but a fair comparison is missing in the literature. In this work, we propose an event-based optical flow solutio
...
SENSIM
An Event-driven Parallel Simulator for Multi-core Neuromorphic Systems
In this paper, we present SENSIM, which is an open-source simulator designed specifically for the SENECA neuromorphic processor. This simulator is unique in that it combines features from both hardware-specific and hardware-agnostic spiking neural network simulators, resulting in
...
Designing processors for implantable closed-loop neuromodulation systems presents a formidable challenge owing to the constrained operational environment, which requires low latency and high energy efficacy. Previous benchmarks have provided limited insights into power consumptio
...