Optical flow-based control for micro air vehicles

an efficient data-driven incremental nonlinear dynamic inversion approach

Journal Article (2024)
Author(s)

Hann Woei Ho (Universiti Sains Malaysia)

Ye Zhou (Universiti Sains Malaysia)

Yiting Feng (Universiti Sains Malaysia)

G. C. H. E. de Croon (TU Delft - Control & Simulation)

Research Group
Control & Simulation
DOI related publication
https://doi.org/10.1007/s10514-024-10174-4
More Info
expand_more
Publication Year
2024
Language
English
Research Group
Control & Simulation
Bibliographical Note
Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public. @en
Issue number
8
Volume number
48
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

This paper proposes an innovative approach for optical flow-based control of micro air vehicles (MAVs), addressing challenges inherent in the nonlinearity of optical flow observables. The proposed incremental nonlinear dynamic inversion (INDI) control scheme employs an efficient data-driven approach to directly estimate the inverse of the time-varying INDI control effectiveness in real-time. This method eliminates the constant effectiveness assumption typically made by traditional INDI methods and reduces the computational burden associated with inverting this variable at each time step. It effectively handles rapidly changing system dynamics, often encountered in optical flow-based control, particularly height-dependent control variables. Stability analysis of the proposed control scheme is conducted, and its robustness and efficiency are demonstrated through both numerical simulations and real-world flight tests. These tests include multiple landings of an MAV on a static, flat surface with several different tracking setpoints, as well as hovering and landings on moving and undulating surfaces. Despite the challenges posed by noisy optical flow estimates and lateral or vertical movements of the landing surfaces, the MAV successfully tracks or lands on the surface with an exponential decay of both height and vertical velocity almost simultaneously, aligning with the desired performance.

Files

S10514-024-10174-4.pdf
(pdf | 3.74 Mb)
- Embargo expired in 07-04-2025
License info not available