Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production
Robert Mans, Jean-Marc G Daran and Jack T Pronk

Evolutionary engineering, which uses laboratory evolution to select for industrially relevant traits, is a popular strategy in the development of high-performing yeast strains for industrial production of fuels and chemicals. By integrating whole-genome sequencing, bioinformatics, classical genetics and genome-editing techniques, evolutionary engineering has also become a powerful approach for identification and reverse engineering of molecular mechanisms that underlie industrially relevant traits. New techniques enable acceleration of in vivo mutation rates, both across yeast genomes and at specific loci. Recent studies indicate that phenotypic trade-offs, which are often observed after evolution under constant conditions, can be mitigated by using dynamic cultivation regimes. Advances in research on synthetic regulatory circuits offer exciting possibilities to extend the applicability of evolutionary engineering to products of yeasts whose synthesis requires a net input of cellular energy.

Address
Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands

Corresponding author: Pronk, Jack T (j.t.pronk@tudelft.nl)

Evolutionary engineering: batch and continuous cultivation strategies
Serial transfer in simple shake flasks or tubes (Figure 1) remains a powerful approach for yeast evolutionary engineering. Especially when each new cycle is inoculated from an exponentially growing culture, while maintaining a constant or continually increasing selective pressure, serial transfer selects for mutants with a higher maximum specific growth rate ($\mu_{\text{max}}$). Serial-transfer experiments have yielded yeast strains with improved stress tolerance (e.g. to high product and inhibitor concentrations, high temperature, low pH) and with improved rates of substrate consumption and/or catabolic product formation (Table 1). In fundamental research, automated serial transfer enabled massive parallel yeast evolution experiments [10]. Recent studies on evolutionary engineering of bacteria [11–13] underline the potential of automation for intensifying yeast evolutionary engineering.

Sequential batch reactors (SBRs) combine automation of repeated batch cultivation with accurate control of process parameters. Automated empty–refill cycles can, for example, be based on the actual $CO_2$ output, where a decrease of the $CO_2$ concentration in the off gas indicates nutrient depletion and triggers the onset of the next cycle [8]. After emptying, a small remaining fraction of the culture then acts as inoculum for the next cycle (Figure 1). Attention is therefore required to prevent accumulation of fast-sedimenting mutants that bypass selection for fast growth [8].

Evolutionary engineering can also be performed in well-established systems for selection of fast-growing mutants...
Table 1

Recent applications of various strategies for evolutionary engineering in *Saccharomyces cerevisiae*. Abbreviations: WGS, whole-genome sequencing; SNP, single-nucleotide polymorphism; HMF, hydroxymethylfurfural.

<table>
<thead>
<tr>
<th>Target Strategy Evolution time</th>
<th>Evolved phenotype</th>
<th>Genotype analysis</th>
<th>Proven causal mutations</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Serial transfer in shake flasks</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Faster glycerol utilization</td>
<td>Serial transfer in synthetic medium with glycerol as sole carbon source</td>
<td>55 generations</td>
<td>Growth on glycerol (0.12–0.13 h⁻¹)</td>
<td>3 Rounds of backcrossing and WGS of independently evolved mutants</td>
</tr>
<tr>
<td>3-Hydroxypropionic acid (3-HP) tolerance</td>
<td>Serial transfer in complex medium supplemented with 3-HP at pH 3.5</td>
<td>Circa 200 generations</td>
<td>Growth in YPD medium at pH 3.5 with 50 g L⁻¹ 3-HP (0.18–0.20 h⁻¹)</td>
<td>WGS of independently evolved mutants</td>
</tr>
<tr>
<td><strong>High-temperature tolerance</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evolution of HXT transporter into glucose-insensitive xylose transporter</td>
<td>Serial transfer of a strain unable to metabolize glucose on synthetic medium with xylose as carbon source in the presence of increasing concentrations of glucose</td>
<td>326–375 generations</td>
<td>1.5–2-fold increased growth rate at 40 °C</td>
<td>WGS of independently evolved mutants</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 transfers</td>
<td>Growth on 10 g L⁻¹ xylose in the presence of up to 50 g L⁻¹ glucose</td>
<td>Sequencing of <em>GAL2</em>, <em>HXT5</em>, <em>HXT7</em> genes (independent evolution experiments)</td>
</tr>
<tr>
<td><strong>Sequential batch reactor (SBR) cultivation</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full biotin prototrophy</td>
<td>SBR cultivation on synthetic medium without biotin. Empty-refill cycles based on CO₂ concentration in off gas Anaerobic SBR cultivation with glucose or galactose as carbon source. Effluent pipe for empty-refill cycles above bottom of bioreactor. Empty-refill cycles based on CO₂ concentration in off gas</td>
<td>11 transfers</td>
<td>32-fold increased growth rate in the absence of biotin (0.32 h⁻¹)</td>
<td>WGS</td>
</tr>
<tr>
<td>Fast biomass sedimentation</td>
<td>Circa 500 and circa 900 generations</td>
<td>Complete sedimentation after 5 min of static incubation</td>
<td>WGS of independently evolved mutants</td>
<td>Whole-genome duplication and mutations in <em>ACE2</em></td>
</tr>
<tr>
<td><strong>Continuous cultivation</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full biotin prototrophy</td>
<td>Accelerostat with feedback-controlled dilution rate based on CO₂ concentration in the off gas on synthetic medium without biotin</td>
<td>48–77 days</td>
<td>25–36-fold increased growth rate in the absence of biotin (0.25–0.36 h⁻¹)</td>
<td>WGS of independently evolved mutants</td>
</tr>
<tr>
<td>Improved xylose fermentation in the presence of lignocellulosic inhibitors</td>
<td>Mutagenesis and anaerobic chemostat cultivation on non-detoxified straw hydrolysate with 20 g L⁻¹ xylose</td>
<td>100 generations</td>
<td>7.5-fold reduction of lag phase and complete removal of HMF, furfural and acetic acid in 24 h (0.12 h⁻¹)</td>
<td>Not performed</td>
</tr>
</tbody>
</table>
such as pH-auxostats, turbidostats [14,15] and related continuous-cultivation set-ups (Figure 1). Glucose-grown continuous cultures, whose dilution rates were feed-back controlled based on on-line CO₂-production measurements, were recently used for selecting fast-growing biotin-prototrophic *S. cerevisiae* strains (Table 1) [16]. In another example, *S. cerevisiae* chemostat cultures grown on a synthetic glucose–acetic acid–ammonium medium without pH control, in which ammonium consumption led to acidification, were used to automatically maximize selective pressure for tolerance to acetic acid, a key inhibitor of yeast performance in lignocellulosic hydrolysates. After 400 generations of selective growth, the permissive acetic-acid concentration of evolving cultures had increased by three fold [17]. In industrial batch processes, low substrate affinity (μ_{max}/K_s [18]) causes extended fermentation times. Nutrient-limited chemostat cultivation (Figure 1), which strongly selects for mutants with an improved affinity for the growth-limiting nutrient, has been extensively applied to improve affinity of wild-type [19,20] and engineered yeasts for various carbon sources, including D-xylose and sucrose (Table 1) [21–23].

Selective pressure can be focused on a specific enzyme or cellular process by genetic engineering. For instance, deletion of all four genes encoding glucose-phosphorylating enzymes in pentose-fermenting *S. cerevisiae* strains enabled *in vivo* evolution of hexose-transporter variants that efficiently transported D-xylose and L-arabinose, two key sugars in lignocellulosic hydrolysates, in the presence of glucose (Table 1) [24*,25,26].

**Table 1.** Continued

<table>
<thead>
<tr>
<th>Target</th>
<th>Evolution time</th>
<th>Strategy</th>
<th>Aerobic turbidostat cultivation on complex medium with gradual increasing glucose concentration (6% up to 12%)</th>
<th>Improved ethanol tolerance</th>
<th>Growing in synthetic medium containing &gt;12.5 g L⁻¹ acetic acid at pH 4.5</th>
<th>Growth in synthetic medium containing 1 g L⁻¹ G418 and 0.5 g L⁻¹ 4-fluorophenylalanine (4-FP) and at pH 4.5</th>
<th>Mutagenesis and serial transfer of a strain with an AAA-biosensor (pARO9-KanNeo) in the presence of increasing levels of G418 and 4-fluorophenylalanine (4-FP)</th>
<th>Increased ploidy and mutations in PHO7, MAX1, and MAX2</th>
<th>Mutations in ASG1, ADH3, SKS1 and GIS4</th>
<th>Increased ploidy and mutations in PHO7, MAX1, and MAX2</th>
<th>Mutations in ASG1, ADH3, SKS1 and GIS4</th>
</tr>
</thead>
<tbody>
<tr>
<td>WGS of independently evolved mutants and cultures</td>
<td>Up to 2.5-fold fitness increase in synthetic medium containing increasing ethanol concentration</td>
<td>WGS of independently evolved mutants and backcrossing</td>
<td>Growth in synthetic medium containing &gt;12.5 g L⁻¹ acetic acid</td>
<td>Growth in synthetic medium containing 1 g L⁻¹ G418 and 0.5 g L⁻¹ 4-fluorophenylalanine (4-FP) and at pH 4.5</td>
<td>Growth in synthetic medium containing &gt;12.5 g L⁻¹ acetic acid</td>
<td>Growth in synthetic medium containing 1 g L⁻¹ G418 and 0.5 g L⁻¹ 4-fluorophenylalanine (4-FP) and at pH 4.5</td>
<td>Mutagenesis and serial transfer of a strain with an AAA-biosensor (pARO9-KanNeo) in the presence of increasing levels of G418 and 4-fluorophenylalanine (4-FP)</td>
<td>Not performed</td>
<td>Not performed</td>
<td>Increased ploidy and mutations in PHO7, MAX1, and MAX2</td>
<td>Mutations in ASG1, ADH3, SKS1 and GIS4</td>
</tr>
<tr>
<td>Aerobic turbidostat cultivation on complex medium with and without ethanol</td>
<td>Improved ethanol tolerance</td>
<td>Constitutive tolerance to high concentrations of acetic acid</td>
<td>Strains with improved aromatic amino acid (AAA) pathway flux.</td>
<td>Synthetic selection circuits</td>
<td>Dynamic selection regimes</td>
<td>Evolutionary sequencing</td>
<td>Availability and cost of reference genomes and bioinformatics platforms</td>
<td>Continued increased fitness in medium containing ethanol</td>
<td>Increased ploidy and mutations in PHO7, MAX1, and MAX2</td>
<td>Mutations in ASG1, ADH3, SKS1 and GIS4</td>
<td>Increased ploidy and mutations in PHO7, MAX1, and MAX2</td>
</tr>
<tr>
<td>Aerobic turbidostat cultivation on complex medium with and without ethanol</td>
<td>Improved ethanol tolerance</td>
<td>Constitutive tolerance to high concentrations of acetic acid</td>
<td>Strains with improved aromatic amino acid (AAA) pathway flux.</td>
<td>Synthetic selection circuits</td>
<td>Dynamic selection regimes</td>
<td>Evolutionary sequencing</td>
<td>Availability and cost of reference genomes and bioinformatics platforms</td>
<td>Continued increased fitness in medium containing ethanol</td>
<td>Increased ploidy and mutations in PHO7, MAX1, and MAX2</td>
<td>Mutations in ASG1, ADH3, SKS1 and GIS4</td>
<td>Increased ploidy and mutations in PHO7, MAX1, and MAX2</td>
</tr>
</tbody>
</table>

**Identifying causal mutations: genome sequencing and classical genetics**

Availability of near-complete, high-quality and strain-specific reference genomes [27,28], accurate whole-genome resequencing technologies and bioinformatics platforms have transformed evolutionary engineering into a powerful approach for understanding the genetic basis of complex, industrially relevant traits [29,30]. Moreover, CRISPR/Cas9-mediated, simultaneous introduction of multiple different targeted mutations [31] strongly accelerates functional analysis of the identified mutations via their introduction into non-evolved strains (Figure 2).

In addition to single-nucleotide mutations, insertions and deletions, evolved yeast strains frequently harbour whole-chromosome or segmental aneuploidies [32–34]. Particularly in the latter cases, only few of the affected genes may contribute to the phenotype of interest. Analysing multiple evolution experiments can help to identify causal mutations, especially when they affect the same genes or cellular processes in parallel experiments (Figure 2) [29]. For example, 3-hydroxypropionate-tolerant *S. cerevisiae* strains, isolated from three independent repeated-batch cultures, carried different mutations in
the S-(hydroxymethyl)-glutathione dehydrogenase gene \textit{SFA1}. This observation enabled elucidation of a glutathione-dependent mechanism for 3-HP tolerance (Table 1) [35*].

Classical yeast genetics can accelerate identification of causal mutations (Figure 2). Back-crossing of evolved haploid strains with a non-evolved strain and subsequent tracking of mutated alleles in segregants that expressed the selected trait, enabled identification of mutations contributing to acetate-acid tolerance, butanol tolerance and fast glycerol utilization in evolved \textit{S. cerevisiae} strains (Table 1) [36,37*,38]. When evolved genotypes are complex, for example, as a result of prolonged growth under conditions that increase mutation frequency, quantitative trait loci (QTL) analysis [39] is a powerful approach, as illustrated by a genetic analysis of improved ethanol tolerance in \textit{S. cerevisiae} strains obtained in a 2-year evolutionary engineering campaign (Table 1) [40].

End-point analyses of evolution experiments do not necessarily capture all beneficial mutations that occurred during evolution and analysis of evolving populations can provide valuable additional information [41,42]. For instance, in a 450-generation experiment that selected for enhanced tolerance towards a mixture of inhibitors occurring in lignocellulosic hydrolysates, strains isolated at early time points showed a markedly higher tolerance to some of the individual inhibitors than the final evolved population [41].

Overview of cultivation strategies used for evolutionary engineering. Red and green colors reflect cultures grown under different selective pressures (e.g. presence and absence of an inhibiting compound or growth on different substrates). The middle column illustrates typical development of specific growth rate ($\mu$) or residual nutrient concentration (for chemostat cultivation, $C_s$) in evolving yeast cultures.
Trade-offs and context dependency: benefits of dynamic selection regimes
Evolutionary engineering often reveals trade-offs between a selected trait and other aspects of yeast physiology. Trade-offs have been intensively studied in evolutionary engineering of S. cerevisiae for high-temperature tolerance, an important characteristic for bioethanol production. After serial transfer at supra-optimal temperatures, \textit{erg}3 null mutations were shown to strongly contribute to improved growth at 40 °C by causing replacement of ergosterol, the major sterol in wild-type membranes, by fecosterol (Table 1) [43]. Initial characterization demonstrated respiratory deficiency of the evolved thermotolerant strains [43], while further analysis revealed a reduced growth rate at 30 °C and increased glycerol production [44,45].

Selection on single substrates favours mutants that preferentially allocate cellular resources to processes that directly contribute to growth on that substrate [46]. Such a preferential resource allocation can go at the expense of the expression of proteins involved in other pathways [47]. Indeed, yeast strains evolved for improved growth on either D-xylose or L-arabinose often consumed...
glucose and/or the other pentose sugar at reduced rates [48–51]. This trade-off was addressed by alternately growing an engineered, pentose-fermenting *S. cerevisiae* strain on different mixtures of glucose, xylose and/or arabinose in SBRs. By balancing the number of generations of growth on each of the three sugars, this dynamic selection regime yielded a strain that rapidly fermented sugar mixtures [49]. Prolonged nutrient-limited growth at low specific growth rates has been reported to result in reduced performance when the nutrient limitation was relieved (Table 1) [20,52,53]. Also in this case, dynamic selection regimes, for example based on alternating SBR and chemostat cultivation cycles, can prevent extreme trade-offs [22,54].

Yeast strains evolved for stress tolerance do not always express the acquired phenotype when the selective pressure is alleviated. Increased acetic-acid tolerance acquired after prolonged anaerobic continuous cultivation of a xylose-fermenting *S. cerevisiae* strain on acetic acid-containing medium, was not expressed in acetate-free medium [17]. Such an inducible tolerance is not compatible with industrial processes that involve a yeast propagation phase on acetic-acid-free media prior to conversion of acetic acid-containing lignocellulosic hydrolysates [3]. A dynamic serial-transfer strategy (Figure 1), in which cultivation cycles in acetic-acid-containing medium were alternated with cycles on acetic-acid-free medium, yielded strains with increased, constitutive acetic-acid tolerance [37*].

**Accelerating evolution of yeast cultures**

While chemical mutagens and radiation have long been used to increase mutation rates in microbes, genetic engineering offers new options to increase mutation frequencies in evolving cultures. Mutator yeast strains that increase mutation frequencies in a genome-wide manner can stimulate specific types of mutations. For example, *S. cerevisiae msh2Δ* strains exhibited a circa 40-fold increased frequency of single-nucleotide mutations and indels, while a *meclΔ tel1Δ* genotype specifically stimulated large structural variations and chromosomal aneuploidy [55]. When target sites of a heterologous recombinase are introduced at multiple genomic loci, expression of the associated recombinase causes deletions, inversions, duplications and more complex chromosomal rearrangements [56]. The Sc2.0 project, which designs and constructs synthetic *S. cerevisiae* genomes, exploits this feature by introducing hundreds of loxP sites. In the resulting strains, ‘genome scrambling’ induced by expression of the Cre recombinase can be used to generate genetic diversity in screening and evolutionary engineering experiments [57–59].

To increase mutation rates at a specific locus, the DNA glycosylase Mag1, which functions in base-excision repair, was fused to the Tet repressor, thus allowing precise targeting of the glycosylase to the 19-bp tet operator (tetO) sequence. Indeed, integration of a 240-copy tetO array efficiently recruited Mag1 to the target locus. Mag1-mediated base excision and subsequent repair by the error-prone DNA polymerase θ, caused over 800-fold higher mutation rates in a 20-kb region surrounding the tetO array [60*]. In a study on retrotransposon-mediated, targeted mutagenesis [61] heterologous DNA was integrated between *Ty1RT* and the 3’-LTR of a galactose-inducible Ty1 retrotransposon in *S. cerevisiae*. Galactose induction resulted in mRNA formation, error-prone reverse transcription and reintegration of (mutated) cDNA, causing mutation rates of ca. 0.15 kb⁻¹ per induction cycle in the target sequence and generating nearly 20 million distinct mutants per litre of culture. This method was successfully employed for in *vivo* mutagenesis of the *S. cerevisiae* global transcriptional regulator gene *SPT15* in an evolutionary engineering study on improving 1-butanol tolerance [61]. A very precisely localized increase in mutation rate was recently achieved by fusing a nuclease-deficient Cas9 (dCas9) to an activation-induced cytidine deaminase (AID). Expression of this complex in the presence of a guide RNA resulted in an increased occurrence of C to T mutations in a range of 3–5 bases in the dCas9 target site [62].

The incidence of copy-number variations of specific sequences can be enhanced by different techniques. When, during evolutionary engineering for fast growth on xylose, an expression cassette for a heterologous xylose isomerase (*XyIA*) was integrated close to an ARS sequence, extrachromosomal circular DNA elements (eccDNA) carrying *XyIA* were formed. These eccDNAs facilitated multi-copy chromosomal integration of *XyIA*, after which the unstably replicating eccDNA was lost [63]. Integration of relevant genes in close proximity to eccDNA-forming ARS sequences, which frequently occur in the *S. cerevisiae* genome [64], offers an interesting approach for evolutionary ‘tuning’ of expression levels of relevant genes in engineered strains. Copy-number variation of relevant genes can also be facilitated by their integration between repetitive DNA sequences such as retrotransposons, as copy-number variation rates at such sites can be up to 5 orders of magnitude higher than elsewhere in the yeast genome [65,66]. Alternatively, tandem integration of multiple expression cassettes enables rapid copy-number expansion or compression by homologous recombination [67].

**A holy grail in evolutionary engineering: improving anabolic product formation**

Design of evolutionary engineering strategies that enable selection for traits that do not confer a selective advantage in wild-type genetic contexts represents key conceptual challenges. In particular, it would be highly interesting and relevant to harness evolutionary engineering for improving productivities and/or yields of ‘anabolic’
products, whose synthesis requires a net input of metabolic energy.

Some anabolic products have specific properties that can be used for designing selective growth regimes. For example, antioxidant properties of carotenoids have been exploited by evolving carotenoid-producing, engineered *S. cerevisiae* under hydrogen-peroxide stress [68] and increased buoyancy has been elegantly used to select for lipid-hyperaccumulating *Yarrowia lipolytica* mutants [69]. Other studies have sought to stoichiometrically couple anabolic product formation to essential metabolic processes by genetic engineering and, thereby, enable growth-based selection regimes. In an early study, pathways for mitochondrial oxidation of cytosolic NADH were eliminated in a triose-phosphate-isomerase negative *S. cerevisiae* strain, thus leaving glycerol production as sole mechanism for NADH reoxidation. Serial transfer of the resulting strain at increasing glucose concentrations enabled isolation of a strain that accumulated over 200 g L\(^{-1}\) glycerol at a yield close to 1 mol (mol glucose)\(^{-1}\) [70]. To couple production of succinate to growth, Otero *et al.* constructed a *S. cerevisiae* ser3Δser33Δsdh3Δ strain, in which isocitrte lyase was essential for glycine and serine biosynthesis [71]. While subsequent evolutionary engineering improved succinate yields, stoichiometric coupling of product formation and growth was confined to a limited range of succinate yields.

Recent developments in research on synthetic regulatory circuits may enable the development of generically applicable strategies for evolutionary engineering of anabolic product formation. Sensor proteins that, upon binding of a compound of interest, activate expression of a fluorescent protein are already intensively applied for fluorescence-activated cell sorting of high-producing mutants [72]. New sensor systems continue to be developed for relevant compounds, as exemplified by the recent construction of two dose-dependent 1-butanol responsive promoters and their application for quantifying 1-butanol production by engineered *S. cerevisiae* strains [73]. In principle, synthetic sensor/promoter systems, for example based on product-specific riboswitches [74], could also be used to tightly couple product formation to an essential cellular process (Figure 3) [75,76]. In a pioneering yeast evolutionary engineering study, an aromatic amino-acid (AAA)-responsive hybrid promoter was used to control expression of the KanNeo gene, which confers weak resistance to geneticin. Serial transfer at increasing concentrations of geneticin and 4-fluorophenylalanine, an anti-metabolite of aromatic amino acid (AAA) synthesis, combined with random mutagenesis, yielded strains with a deregulated AAA pathway, which were used to improve precursor supply for muconic acid production (Table 1) [77**].

While use of synthetic regulatory circuits holds great promise for evolutionary engineering of anabolic product

---

**Figure 3**

Application of synthetic regulatory circuits in yeast evolutionary engineering, as schematically illustrated by the use of a product-responsive riboswitch. (a) Binding of the target product to the riboswitch causes dose-dependent expression (indicated by the darker shades of green in b) of a selection gene (SG), which encodes a protein whose intracellular level controls specific growth rate under selective conditions. (b) In engineered yeasts that co-express the target product pathway and the synthetic regulatory circuit, spontaneous mutants that produce higher levels of the target product (indicated by the darker shades of orange) exhibit a higher specific growth rate and thus can be selected for in evolutionary engineering experiments.
formation, several design criteria remain to be further investigated. To prevent selection of mutants that escape selective pressure by bypassing or ‘killing’ the regulatory circuit, introduction of multiple, redundant regulatory circuits is likely to be required. For instance, expression of multiple essential genes may be coupled to multiple, independent product-sensor/promoter combinations [78] and the dynamic range of the regulatory circuits should match or be easily adaptable to industrially relevant intracellular and/or extracellular concentrations of products or intermediates of interest. Designing, building and testing such strategies provides an industrially relevant scientific challenge at the interface of synthetic biology, microbial physiology and evolution biology.

Conclusions
Rapid developments in sequencing, analysis and editing of yeast genomes have transformed evolutionary engineering from a simple ‘black box’ strain-improvement strategy into an invaluable asset for understanding and rationally engineering yeast cell factories. Recent studies demonstrate how genetic engineering can confer a selective advantage to yeast strains with specific, industrially relevant phenotypes. Integration of carefully designed (dynamic) cultivation regimes, based on insight in yeast physiology and ecology, with methods for accelerating in vivo mutation rates at specific loci or across the yeast genome will further increase the impact of evolutionary engineering on yeast biotechnology. While still in its infancy, implementation of product-responsive, growth-coupled synthetic regulatory loops has the potential to addressing the longstanding challenge of harnessing the power of evolutionary engineering to enhance production of compounds whose synthesis by yeast cells does not confer a direct selective advantage. Designing, building and testing such circuits will involve exciting research at the interface of synthetic biology, yeast physiology and experimental evolution.

Conflicts of interest
None.

Acknowledgements
This work was supported by an Advanced Grant of the European Research Council (grant # 694633). JMD acknowledges CHASSY: Model-Based Construction And Optimisation Of Versatile Chassis Yeast Strains For Production Of Valuable Lipid And Aromatic Compounds. This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No. 720824.

References and recommended reading
Papers of particular interest, published within the period of review, have been highlighted as:

● of special interest
◆ of outstanding interest


Demonstration of how genome sequencing of yeast strains obtained from independent, parallel evolutionary engineering experiments enables fast elucidation of the molecular basis of an industrially relevant trait.


Demonstration of how a dynamic evolutionary engineering strategy decreases context dependency of an evolved phenotype. The study also illustrates application of classic yeast genetics to facilitate identification of causal mutations.

56 Energy biotechnology


56. Genetic engineering strategies for increasing the genome-wide incidence of specific mutations in growing yeast cultures.


62. Elegant demonstration of a method to accelerate evolution at a specific, predefined locus in the yeast genome.


68. Zhao Y, Strope PK, Kozmin SG, McCusker JH, Dietrich FS, Kokoska RJ, Petes TD: Structures of naturally evolved CUP1 tandem arrays in yeast indicate that these arrays are generated by unequal nonhomologous recombination. G3 Genes, Genomes, Genet 2014, 4:2259-2269.


Pioneering study on the application of synthetic regulatory circuits for evolutionary engineering of anabolic product formation.