Authored

20 records found

When transcriptome meets metabolome

Fast cellular responses of yeast to sudden relief of glucose limitation.

Within the first 5 min after a sudden relief from glucose limitation, Saccharomyces cerevisiae exhibited fast changes of intracellular metabolite levels and a major transcriptional reprogramming. Integration of transcriptome and metabolome data revealed tight relationships betwee ...

Pathway swapping

Toward modular engineering of essential cellular processes

Recent developments in synthetic biology enable one-step implementation of entire metabolic pathways in industrial microorganisms. A similarly radical remodelling of central metabolism could greatly accelerate fundamental and applied research, but is impeded by the mosaic organiz ...

CRI-SPA

A high-throughput method for systematic genetic editing of yeast libraries

Biological functions are orchestrated by intricate networks of interacting genetic elements. Predicting the interaction landscape remains a challenge for systems biology and new research tools allowing simple and rapid mapping of sequence to function are desirable. Here, we descr ...

GEL DNA

A Cloning-and Polymerase Chain Reaction-Free Method for CRISPR-Based Multiplexed Genome Editing

Even for the genetically accessible yeast Saccharomyces cerevisiae, the CRISPR-Cas DNA editing technology has strongly accelerated and facilitated strain construction. Several methods have been validated for fast and highly efficient single editing events, and diverse approaches ...

Entering GATTACA

Yeast genomes: Analysis, insights and applications

Excessive by-product formation

A key contributor to low isobutanol yields of engineered Saccharomyces cerevisiae strains

Engineering a new metabolic function in a microbial host can be limited by the availability of the relevant cofactor. For instance, in Yarrowia lipolytica, the expression of a functional nitrate reductase is precluded by the absence of molybdenum cofactor (Moco) biosynthesis. In ...
Although transplantation of single genes in yeast plays a key role in elucidating gene functionality in metazoans, technical challenges hamper humanization of full pathways and processes. Empowered by advances in synthetic biology, this study demonstrates the feasibility and impl ...
ErCas12a is a class 2 type V CRISPR-Cas nuclease isolated from Eubacterium rectale with attractive fundamental characteristics, such as RNA self-processing capability, and lacks reach-through royalties typical for Cas nucleases. This study aims to develop a ErCas12a-mediated geno ...
Background: l-Arabinose occurs at economically relevant levels in lignocellulosic hydrolysates. Its low-affinity uptake via the Saccharomyces cerevisiae Gal2 galactose transporter is inhibited by d-glucose. Especially at low concentrations of l-arabinose, uptake is an important r ...
Dimethyl sulfide (DMS) is a sulfur containing volatile that enhances general fruity aroma and imparts aromatic notes in wine. The most important precursor of DMS is S-methylmethionine (SMM), which is synthesized by grapes and can be metabolized by the yeast S. cerevisiae during w ...
Saccharomyces pastorianus is not a classical taxon, it is an interspecific hybrid resulting from the cross of Saccharomyces cerevisiae and Saccharomyces eubayanus. Exhibiting heterosis for phenotypic traits such as wort α-oligosaccharide consumption and fermentation at low temper ...
The biobased-economy aims to create a circular biotechnology ecosystem to transition from a fossil fuel-based to a sustainable industry based on biomass. For this, new microbial cell-factories are essential. We present the draft genome of the CEN.PK-derived Saccharomyces cerevisi ...
Background: Microbial production of nitrogen containing compounds requires a high uptake flux and assimilation of the N-source (commonly ammonium), which is generally coupled with ATP consumption and negatively influences the product yield. In the industrial workhorse Saccharomyc ...
The haploid Saccharomyces cerevisiae strain CEN.PK113–7D is a popular model system for metabolic engineering and systems biology research. Current genome assemblies are based on short-read sequencing data scaffolded based on homology to strain S288C. However, these assemblies con ...
Neocallimastigomycetes are unique examples of strictly anaerobic eukaryotes. This study investigates how these anaerobic fungi bypass reactions involved in synthesis of pyridine nucleotide cofactors and coenzyme A that, in canonical fungal pathways, require molecular oxygen. Anal ...
Oleate hydratases (Ohys, EC 4.2.1.53) are a class of enzymes capable of selective water addition reactions to a broad range of unsaturated fatty acids leading to the respective chiral alcohols. Much research was dedicated to improving the applications of existing Ohys as well as ...
An oxygen requirement for de novo biotin synthesis in Saccharomyces cerevisiae precludes the application of biotin-prototrophic strains in anoxic processes that use biotin-free media. To overcome this issue, this study explores introduction of the oxygen-independent Escherichia c ...
Metabolic capabilities of cells are not only defined by their repertoire of enzymes and metabolites, but also by availability of enzyme cofactors. The molybdenum cofactor (Moco) is widespread among eukaryotes but absent from the industrial yeast Saccharomyces cerevisiae. No less ...