AS
A.J.J. Straathof
229 records found
1
...
Single Cell Protein Production From Ethanol
Model-Based Bioreactor Operation at Industrial Scale
Alternative fermentation feedstocks such as ethanol can be produced from CO2 via electrocatalytic processes that coproduce O2. In this study, industrial-scale fermentation of ethanol with pure O2 for single cell protein (SCP) production was studie
...
Due to climate change and increasing droughts, wastewater treatment and water reuse are gaining importance. Yet, the state-of-the-art bubble-aerated membrane bioreactor (BA-MBR) faces competitiveness challenges due to its high energy use and maintenance requirements, especially a
...
The butanediols (BDOs), 2,3-, 1,4- and 1,3-butanediol, are platform chemicals that are mainly produced from fossil hydrocarbons but may be obtained through fermentation. However, low product concentration, by-product formation and high boiling temperatures of BDOs hinder downstre
...
Dynamic compartment models
Towards a rapid modeling approach for fed-batch fermentations
Anticipating the occurrence and effects of mass transport limitations during fermentation scale-up is essential for commercialization, as heterogeneities might affect microorganisms. Tools like Computational Fluid Dynamics (CFD) aid this analysis but are computationally intensive
...
Syngas fermentation is a promising bioprocessing method that utilises autotrophic organisms to convert C1 gases, such as CO and CO2, into valuable chemicals, offering both environmental and economic benefits. Despite these advantages, the industrial application of gas fermentatio
...
Isopropanol-butanol-ethanol (IBE) fermentation is a superior biofuel production technology as compared to acetone-butanol-ethanol (ABE) fermentation due to the better fuel properties of the obtained products. However, low product concentrations, thermodynamic constraints and the
...
Isobutanol is a highly attractive renewable alternative to conventional fossil fuels, with superior fuel properties as compared to ethanol and 1-butanol. Even though the isobutanol production by fermentation has significant potential, complex downstream processing is limiting the
...
Abstract: Syngas fermentation to ethanol has reached industrial production. Further improvement of this process would be aided by quantitative understanding of the influence of imposed reaction conditions on the fermentation performance. That requires a reliable model of the micr
...
PDO (1,3-propanediol) is a platform chemical that is obtained by petrochemical routes and by fermentation. The latter needs relatively complex downstream processing after fermentation, due to the modest concentration of the high-boiling product, and the presence of microorganisms
...
Combining intermittent renewable electricity (IRE) with carbon capture and utilisation is urgently needed in the chemical sector. In this context, microbial electrosynthesis (MES) has gained attention. It can electrochemically produce hexanoic acid, a value-added chemical, from C
...
CO2 electroreduction driven by renewable energy is a promising technology for defossilizing the chemical industry, but intermittency challenges its operation. This work aims to understand the impacts of intermittency on the design, volume flexibility, and scheduling of a microbia
...
Propionic acid is a valuable platform chemical that is usually produced via fossil routes. As these are energy-intensive and eco-unfriendly processes, fermentative production of propionic acid is becoming more attractive. However, the complex downstream processing (due to low ach
...
Even though industrial biotechnology is successfully used for the production of some chemicals, for many other chemicals it is not yet competitive with conventional petrochemical production. Usually, fermentation as well as downstream processing requires improvement. Downstream p
...
Pass-through distillation (PTD) is a novel separation technology that can effectively overcome challenges related to using vacuum distillation in bio-based processes (defined temperature limit for evaporation that might result in very low condensation temperature). This method al
...
Microbial electrosynthesis (MES) is a novel carbon utilisation technology aiming to contribute to a circular economy by converting CO2 and renewable electricity into value-added chemicals. This study presents a cradle-to-gate life cycle assessment (LCA) of hexanoic aci
...
Carbon-based products are essential to society, yet producing them from fossil fuels is unsustainable. Microorganisms have the ability to take up electrons from solid electrodes and convert carbon dioxide (CO2) to valuable carbon-based chemicals. However, higher produc
...
Ethyl acetate is a platform chemical conventionally obtained through fossil fuel routes, but more recently its production by fermentation from carbohydrates has been scaled up to a pilot scale. Yet, the complexity of downstream processing (low product concentrations in liquid bro
...
Distillation is the most used separation technology at industrial-scale, but using distillation in bio-based processes (e.g. fermentation processes to produce bioethanol) is quite challenging when mild temperatures are needed to keep the microbes alive. Vacuum distillation can be
...
Effect of H2:COratio on theoretical carbon yield of bio-syngas and basic oxygen furnace gasfermentation to chemicals
A thermodynamic and metabolic-based approach
Syngas fermentation is an up-and-coming technology that uses acetogenic microorganisms to produce ethanol at the commercial scale. Acetogens can produce many different types of products via their metabolic pathway called the Wood Ljugdahl Pathway (WLP). The WLP can natively produ
...
Abstract: Syngas fermentation is a leading microbial process for the conversion of carbon monoxide, carbon dioxide, and hydrogen to valuable biochemicals. Clostridium autoethanogenum stands as a model organism for this process, showcasing its ability to convert syngas into ethano
...