Full humanization of the glycolytic pathway in Saccharomyces cerevisiae

Journal Article (2022)
Author(s)

Francine Boonekamp (TU Delft - BT/Industriele Microbiologie)

Ewout Knibbe (TU Delft - BT/Industriele Microbiologie)

Marcel A. Vieira Lara (University Medical Center Groningen)

M. Wijsman (TU Delft - BT/Industriele Microbiologie)

MAH Luttik (TU Delft - BT/Industriele Microbiologie)

Karen van Eunen (University Medical Center Groningen)

M.J. Ridder (TU Delft - BT/Industriele Microbiologie)

Martin Pabst (TU Delft - BT/Environmental Biotechnology)

Jean Marc G. Daran (TU Delft - BT/Industriele Microbiologie)

P.A.S. Lapujade (TU Delft - BT/Industriele Microbiologie)

Research Group
BT/Industriele Microbiologie
Copyright
© 2022 F.J. Boonekamp, E. Knibbe, M.A. Vieira Lara, M. Wijsman, M.A.H. Luttik, Karen van Eunen, M.J. den Ridder, Martin Pabst, J.G. Daran, P.A.S. Daran-Lapujade
DOI related publication
https://doi.org/10.1016/j.celrep.2022.111010
More Info
expand_more
Publication Year
2022
Language
English
Copyright
© 2022 F.J. Boonekamp, E. Knibbe, M.A. Vieira Lara, M. Wijsman, M.A.H. Luttik, Karen van Eunen, M.J. den Ridder, Martin Pabst, J.G. Daran, P.A.S. Daran-Lapujade
Research Group
BT/Industriele Microbiologie
Issue number
13
Volume number
39
Pages (from-to)
111010
Reuse Rights

Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Abstract

Although transplantation of single genes in yeast plays a key role in elucidating gene functionality in metazoans, technical challenges hamper humanization of full pathways and processes. Empowered by advances in synthetic biology, this study demonstrates the feasibility and implementation of full humanization of glycolysis in yeast. Single gene and full pathway transplantation revealed the remarkable conservation of glycolytic and moonlighting functions and, combined with evolutionary strategies, brought to light context-dependent responses. Human hexokinase 1 and 2, but not 4, required mutations in their catalytic or allosteric sites for functionality in yeast, whereas hexokinase 3 was unable to complement its yeast ortholog. Comparison with human tissues cultures showed preservation of turnover numbers of human glycolytic enzymes in yeast and human cell cultures. This demonstration of transplantation of an entire essential pathway paves the way for establishment of species-, tissue-, and disease-specific metazoan models.