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Summary

Societies demand for sustainability is one of the main drivers for innovation in the wind
energy industry. The increasing size of wind turbines implies increasingly flexible turbine
blades. The flexibility of the blades induces the occurrence of fluid-structure interaction
(FSI) phenomena. The simulation codes that are used for the design of wind turbines
need to be validated with observational data. In the current research a FSI experiment of
a wing equipped with a trailing edge flap is performed to provide validation data. Little
data is available in literature of free motion FSI experiments. Therefore, a FSI experiment
is performed with a freely moving wing equipped with a trailing edge flap.

The FSI experiment consists of two parts, one part is meant to provide the steady char-
acteristics of the experimental setup and the other comprises the unsteady FSI measure-
ments. Uncertainty quantification is applied to the steady part of the experiment to obtain
uncertainty characteristics. Input uncertainty estimates are obtained from observational
data or expert knowledge. The uncertain wing geometry is investigated by performing
measurements and constructing a three-dimensional wing model. The three-dimensional
wing geometry is parameterized using a free-form deformation tool. Sensitivity analysis is
applied to the uncertain input variables and geometric parameters to obtain the influence
on the lift and moment coefficient and the relative importance of the parameters.

An uncertainty analysis is performed by propagating the input uncertainties of the most
important parameters through a computer model. The computer model is made up of
a probabilistic collocation response surface of panel method simulations and a kriging
surrogate of vortex lattice method simulations. Uncertainty characteristics are obtained
for the lift and moment coefficient on the experimental input data points. Combining
the uncertainty characteristics with the observational data provides useful input for the
validation of computer codes.

Using the experimental observations uncertain or unknown inputs are estimated using
Bayesian calibration. The calibration estimates yield the best fit of the simulation data
to the observational data, given the quantified uncertainties. The calibration estimates
are used to make predictions of drag coefficient data. A comparison is made between the
calibrated drag coefficient predictions and experimental drag measurements.
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Chapter 1

Introduction

The demand for sustainability has focused the attention of energy suppliers on renewable
energy sources. Wind energy is a promising source of renewable energy. Wind energy
is transformed into electrical power by wind turbines. Innovation in the field of wind
energy is the main driver to come up with increasingly efficient, large and low weight
wind turbine designs. Increasing flexibility of the wind turbine blades merges together
with the increase in size. Flexible wind turbine blades give rise to the phenomenon of
fluid-structure interaction (FSI).

1.1 Literature Review

Prior to this thesis a literature review is performed to investigate available research results
in literature and reported by Boon [2011]. The literature review was focused on fluid-
structure interaction experiments and uncertainty quantification analyses.

Numerous FSI experiments are reported in literature that study forced moving structure
in a fluid. Pitching as well as plunging airfoil cases has been studied to understand the
interaction phenomena and wake dynamics. However, not many experiments are reported
that study freely moving structures, especially not with rigid wings. This underlines the
need for a free motion experiment to understand the aerodynamics of freely moving wings.

Uncertainty quantification analyses have been applied in many fields of science, espe-
cially the sciences related to engineering. Uncertainties are generally studied using com-
puter codes that simulate reality. For aerodynamic problem computational fluid dynam-
ics (CFD) codes are often employed. Various uncertainty quantification methods have
emerged to study uncertain phenomena by making use of simulation codes. Monte Carlo
methods provide a simple and straightforward approach to uncertainty analysis. The use
of Monte Carlo methods however is limited in aerodynamic applications due to the large
amount of required code evaluations to obtain uncertainty characteristics.

An efficient approach to uncertainty analysis is provided by the probabilistic collocation
(PC) method since it requires relatively few code evaluations. The probabilistic colloca-
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2 Introduction

tion method has been used in conjunction with CFD codes to study uncertain aerodynamic
problems. Loeven [2010] has used PC to study uncertainties in aerodynamic characteris-
tics due to uncertain geometries and uncertain flow quantities. Furthermore, the method
is applied to transonic flows about airfoils by Chassaing & Lucor [2010].

Wikle & Berliner [2006] discuss another promising technique for uncertainty quantifica-
tion, which is called kriging. Using kriging a surrogate can be constructed from outputs of
an expensive simulation code. Uncertainty analyses are performed using Monte Carlo in-
tegration on the kriging surface. Furthermore, kriging has been incorporated in Bayesian
inference techniques by Kennedy & O’Hagan [2001a]. They describe a Bayesian cali-
bration approach to estimate unknown or uncertain parameters. Bayesian calibration
provides parameter estimates that yield the best fit of simulation data to observational
data, given an error structure.

Wang et al. [2009] provide a method for the validation of computer codes with respect to
observational data. This method is also based on the construction of kriging surrogates.
A code can be said to comply with experimental observations if the outputs are within
confidence bounds that are obtained by the validation method.

1.2 Fluid-Structure Interaction Experiment

For the design of wind turbines computer simulation codes are extensively used. Advances
in computer technology have made it possible to simulate aerodynamic systems increas-
ingly accurately. Several computer codes have become available for the simulation of
fluid-structure interaction systems. However, not many different experiments have been
performed for the validation of these codes. Hardly any reports are available in litera-
ture of especially fluid-structure interaction experiments with freely moving structures.
Therefore in the current research a fluid-structure interaction experiment with a freely
moving structure is performed to provide validation data for simulation codes. Prior to
the fluid-structure interaction experiment steady measurements are performed to obtain
the characteristics of the system.

The experiment is performed using a three-dimensional wing equipped with a trailing
edge flap. The trailing edge flap is deflected using servo engines that are located inside
the wing. The deflecting flap induces the free motion of the wing structure. Chapter 2
provides a description of the experiment and a discussion of the results.

1.3 Uncertainty Quantification

Experiments are subject to statistical and systematic uncertainties. Statistical uncer-
tainties are unknowns that differ each time the same experiment is run. Systematic
uncertainties are caused by unknown sources that could be known in principle but are
unknown in practice. Both types of uncertainties induce uncertainties in the experimental
observations. Quantification of the uncertainties is required for the validation of computer
codes with the experimental observations. The main aim of this thesis is described as
follows:



1.3 Uncertainty Quantification 3

Obtain uncertainty characteristics of the experimental observations and inves-
tigate the sources of uncertainty using uncertainty quantification techniques.

Uncertainty quantification is the science of quantitative characterization and reduction
of uncertainties. It provides information about how likely certain outcomes are if some
aspects of the process are unknown or uncertain. Uncertainty quantification is applied to
the current experiment by regarding parametric uncertainties, which are believed to be
the main cause of the output uncertainties. In this first work uncertainty quantification is
only applied to the steady measurements of the lift and moment. Inferences can be made
on the uncertainty characteristics of the steady measurements to provide information for
the fluid-structure interaction experiment.

The experimental uncertainties are studied by making use of computer simulation mod-
eling. Two simulation codes are employed that are able to model the influence of the
important inputs of the experiment and are cheap to run. Chapter 3 describes the simu-
lation codes and the corrections applied to the simulation outcomes in order to compare
them with the experimental observations.

A useful framework for uncertainty analysis is provided by Bayesian statistics. Chapter 4
elaborates on the principles of Bayesian statistics and describes a classification of the
sources of uncertainties. Furthermore, mathematical methods are discussed that are used
in uncertainty quantification.

The input uncertainties present in the experiment are divided into two groups, the geomet-
ric uncertainties and the experimental input uncertainties. The geometric uncertainties
correspond to the three-dimensional wing geometry. The wing geometry is uncertain due
to bad manufacturing standards. In order to obtain information about the uncertain wing
geometry measurements are performed, see chapter 5. A three-dimensional model is ob-
tained from the measurements of the wing geometry, which is still subject to uncertainties.
The model of the uncertain wing geometry is parameterized using a free-form deforma-
tion tool, see chapter 6. Sensitivity analysis is applied to the parameterized geometry to
obtain the sensitivity of the lift coefficient to geometric variations.

The second group of uncertainties are termed experimental input uncertainties. This
group refers to all experimental input parameters except the wing geometry. The angle
of attack and the flap angle are included in this group as well. Chapter 7 provides a
characterization of the experimental input uncertainties. Estimates of the input uncer-
tainties are obtained by using data or expert knowledge or both. A sensitivity analysis is
performed on the input parameters to obtain their relative influence on the lift coefficient.

Having obtained the characteristics of the input uncertainties the output uncertainties
are quantified by propagation of the input uncertainties through a computer model, as
discussed in chapter 8. The uncertainty quantification results are compared with the
observational data.

In chapter 9 the most important unknown or uncertain input parameters are estimated
using a Bayesian inference technique called calibration. Calibration refers to estimating
unknown or uncertain parameters that provide the best fit of simulations to observations.
Having obtained the estimates for the unknown parameters predictions are performed for
the drag coefficient, which is absent in the experimental results.

Finally conclusions and recommendations for future work are given in chapter 10.
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Chapter 2

Wind Tunnel Experiment

Fluid-structure interaction phenomena play an important role in the design of wind tur-
bines. The design of wind turbines is mainly performed employing Computational Fluid
Dynamics (CFD) simulations. Experimental observations are required to validate the
CFD codes. In this thesis a Fluid-Structure Interaction (FSI) experiment is reported,
which is performed to provide validation data for simulation codes. Using uncertainty
quantification methods the experimental errors are assessed and investigations are per-
formed to increase understanding about the causes of uncertainty. Furthermore, infor-
mation about the uncertainty characteristics of the observations is required to validate
computer codes with the experimental results.

This chapter presents a description of the experiment and a discussion of the results of
the steady part of the experiment. Section 2.1 describes the setup and conditions of the
FSI wind tunnel experiment. As described in section 2.2, a steady case is performed prior
to the actual FSI case to obtain the steady aerodynamic characteristics of the setup.
Both the steady and the FSI case are described in this section. Because in this thesis
uncertainty quantification is only applied to the steady case, only the results of this case
are presented, see section 2.3.

2.1 Experimental Apparatus and Conditions

The experiment is performed in an open wind tunnel, termed the Open Jet Facility (OJF).
The OJF and its operating conditions during the experiment are described in section 2.1.1.
Section 2.1.2 describes the experimental setup. Measurements are performed using various
measurement equipment, as discussed in section 2.1.3.

2.1.1 Open Jet Facility

The Open Jet Facility is an atmospheric low speed wind tunnel with an open jet entering
the test section. A large fan powered by a 500 kilowatt electric engine is able to achieve

5
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a maximum free stream velocity in the test section of about 35 meters per second. The
air is rotated 180 degrees around the corners through a long diffuser and two rows of
corner vanes. After passing a short diffuser the air enters the settling chamber. Here the
turbulence and velocity fluctuations in the airflow are reduced by five fine-mesh screens.
Via a contraction the air is blown into the test section through an open jet tunnel exit. At
the end of the test section the air is cooled by an enormous cooling radiator. After being
cooled the air passes corner vanes and is thereby guided back to the fan. A schematic
representation of the wind tunnel is shown in Figure 2.1.

Figure 2.1: Schematic representation of the Open Jet Facility and the air flow.

The octagonally shaped tunnel exit has a width of 2.85 meters and a height of 2.85 meters.
The wind tunnel test models are placed behind the tunnel exit in the large test section
of 13 meters width and 8 meters height. The large dimensions of the test section enable
to test large scale models that are used for example for wind energy research. The tunnel
operates under atmospheric conditions. This experiment is performed at a free stream
velocity of 21 m/s. The wind tunnel operating conditions are summarized in Table 2.1.

2.1.2 Wind Tunnel Test Model

The test model consists of a wing suspended to a structure and placed on a measure-
ment table in the wind tunnel test section, see Figure 2.2. The wing characteristics are
summarized in Table 2.2. The wing geometry is based on the DU 96-W-180 airfoil (or
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mean standard deviation

Free stream velocity V [m/s] 21.0 0.05
pressure p [hPa] 1006.5 6.7
temperature T [◦C] 19.2 1.95
density ρ [kg/m3] 1.206 0.066
kinematic viscosity ν [m2/s] 1.50 · 10−5 4.6 · 10−7

Reynolds number Re [-] 7.0 · 105 5.9 · 104

Mach number Ma [-] 0.06 1.6 · 10−4

Table 2.1: Wind tunnel operating conditions during the experiment.

Figure 2.2: Sketch of the wind tunnel setup showing the tunnel exit with the structure
placed on the measurement table behind the tunnel exit.
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DU96W180 in short), which is designed at the Delft University of Technology as a wind
turbine profile. The wing span b is 1.8 m, the chord length c is 0.5 m and the maximum
thickness is 18% of the chord length. The wing is equipped with a trailing edge flap of
20% chord length, which is hinged at the pressure side of the wing. The flap is actuated
by two servo engines, which are located inside the wing. The servo engines are controlled
by putting them under a specific voltage. The wing is assumed to be rigid. The geometric
deformations, being introduced by flap deflections, induce free vertical motion. Note that
the internally located servo engines are the only forcing actuators; no external forcing
is applied to the wing. Tripping wires are applied at 5%c on the pressure side and 2%c
on the suction side measured from the leading edge to advance boundary layer transi-
tion. Because the effectiveness of the tripping wires has not been assessed for the current
experiment, no exact data is available for the transition location.

airfoil DU 96-W-180
chord c 0.5 m
maximum thickness 18%c
span b 1.8 m
material carbon composite
high lift device 20%c TE flap
tripping wire thickness 0.48 mm

Table 2.2: Characteristics of the DU 96-W-180 airfoil.

The aerodynamic characteristics of the DU 96-W-180 profile are shown in Figure 2.3.
These characteristics are obtained from a two-dimensional experiment, which is performed
outside the context of this thesis. The maximum lift coefficient clmax amounts to approx-
imately 1.25 and occurs at a critical angle of attack αcr around 10 degrees. The drop in
lift and the increase of drag for α larger than αcr indicate the stall region of the airfoil.
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(a) Lift coefficient.
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(b) Drag and moment coefficient.

Figure 2.3: Aerodynamic characteristics of the DU 96-W-180 airfoil (Re = 7 · 105).

A structure has been manufactured to support the wing and enable vertical motion. Fig-
ure 2.2 shows that the supporting structure consists of side walls and top beams, which
are meant for structural stiffness. Each side wall structure is made into an aerodynami-
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cally smooth shape by using a wooden leading edge shape, shielding plates at both sides
and an aluminum trailing edge. The wing is attached via shafts to plates that are able
to slide vertically inside the side wall structure, as shown in Figure 2.4a. The attaching
shaft sticks through one of the side plates in a slit of 3 centimeter. Using rods the vertical
motion can be constrained for the steady part of the experiment. The height of the wing
above the measurement platform amounts to 1.75 m for the steady part. During the
unsteady part of the experiment the sliding plates are suspended to the structure using
springs to enable vertical motion of the wing. Figure 2.4b shows the connection of the
rods and the springs to the sliding plate. In between the wing and the side walls a gap is
present of approximately 4 mm.

(a) Sketched detail of the attachment of the wing shaft
to the sliding plate.

(b) Detailed picture
of the sliding
plate with the
rod and spring
attachments.

Figure 2.4: Attachment of the wing shaft to the sliding plates including the rod and spring
connection between the load cells and the sliding plate.

2.1.3 Measurement Equipment

During the experiment various sensors measure the wind tunnel conditions, the attitude
of the wing and the forces acting on the wing. In addition, flow field measurements are
performed using Particle Image Velocimetry (PIV).

Measurement Sensors

The physical quantities related to the wind tunnel conditions, such as the pressure and
the free stream velocity, are measured by sensors, which are installed in the wind tunnel.
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Figure 2.5: Measurement of the angle
of attack by a Clinotronic
PLUS measurement device
using a wooden mold.

The main variables of the measurement
setup are the angle of attack and flap angle.
For the angle of attack the upward direc-
tion is defined as positive and for the flap
angle the downward direction is defined as
positive. The angle of attack is set manu-
ally by making use of a wooden mold that
is made based on measurements of the ge-
ometry, see Figure 2.5. The measurements
are performed using a coordinate measur-
ing machine, as discussed in section 5.1.
The angle is measured by a Clinotronic
PLUS measurement device, which has an
maximum error of 0.03 degrees. The flap
angle control mechanism is calibrated us-

ing a little mold and the Clinotronic PLUS measurement device. The little mold was
manufactured using the big mold as a reference. Once the flap angle calibration is per-
formed the servo engines control inputs are determined.

The aerodynamic characteristics and attitude variables are measured using various sen-
sors, as shown in Table 2.3. The lift force acting on the wing is measured by two types
of sensors yielding redundant measurements. The aerodynamic forces acting on the wing
are transferred to the load cells via either the connecting springs or the rods, depending
on the experimental case. Furthermore, strain gauges are installed on the wing shafts to
measure the lift and drag. The aerodynamic moment is measured using torque sensors
that are attached to the wing shafts. The torque sensors are of type TS170 having an
uncertainty of 0.2 Nm.

Prior to performing the experiment the angle sensors and the strain gages are calibrated.
The load cells and the torque sensors are calibrated by the supplier prior to delivery and
checked when setting up the experiment. For the strain gauges no error specifications
are available. The strain gauge measurement error depends not only on the strain gauge
itself, but also to the bond with the underlying material and the direction in which it
is placed. Based on these considerations the strain gauge outputs are believed to be
subject to severe measurement errors. Therefore, the strain gauge measurements will not
be presented in this chapter.

The output of the sensors, except the wind tunnel sensors, is continuously logged at a
rate of 2 kHz by the National Instruments program Labview. The servo engines are also
controlled via Labview.

Particle Image Velocimetry Equipment

A particle image velocimetry (PIV) measurement campaign is carried out to obtain a
velocity vector field of the flow about the wing at mid span.

Using a fog generator smoke is released in the flow. The smoke is illuminated by a laser
that produces a thin laser sheet at mid span. A camera takes pictures of the illuminated
smoke particles that are in the thin laser sheet at mid span of the wing. At each instant
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Supplier type measured maximum
quantity error

load cells Feteris components BV FLB3G lift 0.2 N
torque sensors ME Meßsysteme GmbH TS170 0.2 Nm
strain gauges HBM 1-LY41-6/350A lift, drag n/a
potentiometers Feteris components BV LNB22 angle of attack, 0.1◦

flap angle
magnetic Feteris components BV TM+MP200 vertical wing 0.1 mm
transducer position

Table 2.3: Specifications of measurement equipment.

two pictures are taken separated in time with a very short interval. The traveled distance
of particles in two subsequently taken pictures is determined by correlation functions.
The traveled distance of the particles and the time interval are used to compute velocity
vectors in the flow field.

Since the dimensions of the wing are relatively large for PIV measurements the entire area
of interest is divided into 8 fields of view. In order to reduce experiment running time
two cameras are employed taking pictures simultaneously. An overlap is present between
the pictures of both cameras and between each field of view. The overlap is required to
relate the various fields of view to each other and obtain a velocity vector field in the area
of interest without gaps.

2.2 Experimental Test Cases

The current research experiment is a free motion fluid-structure interaction experiment.
The full experiment is broken down into two test cases. In order to obtain the aerody-
namic characteristics of the experimental setup, initially steady experiments for a range
of angle of attack and flap angle are performed, as discussed in section 2.2.1. After having
performed the steady measurements unsteady measurements are performed, as described
in section 2.2.2. The unsteady case is the actual fluid-structure interaction part of the
experiment.

2.2.1 Steady Case

Steady measurements are performed to obtain the aerodynamic characteristics of the
measurement setup. In this case the wing is fixed to the lower load cells by means of rods
to prevent movement.

The series of angles of attack and flap angles at which measurements are performed is
presented in Table 2.4. A mistake is made for ID number 13 where a flap angle of -1
degree is used instead of a flap angle of 1 degree. The measurements with varying angle
of attack are performed first. When these were finished the angle of attack was fixed
during the remainder of the entire experiment. The angle of attack and flap angle were
set according to the procedure described in section 2.1.3. For each measurement the angle
of attack and flap angle were checked using the Clinotronic PLUS device.



12 Wind Tunnel Experiment

ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

α [◦] -6 -4 -2 -1 1 2 4 6 0 0 0 0 0 0 0
δ [◦] 0 0 0 0 0 0 0 0 -4 -2 -1 0 -1 2 4

Table 2.4: Angle of attack α and flap angle δ inputs for the steady case.

2.2.2 Fluid-Structure Interaction Case

The steady case is meant to provide the steady characteristics of the wind tunnel setup
and to act as a reference for the unsteady case. The part of the experiment comprising of
fluid-structure interaction measurements is termed the unsteady or FSI case. In the FSI
case coupling between the structural deformation and the aerodynamic flow is present.
The specialty of this experiment is that no external forcing is applied to the wing.

Structural deformation is introduced by flap angle deflections, which are controlled by
the servo engines. The flap deflection follows harmonic oscillation cycles. The flow con-
dition and structural deformation repeat after each cycle such that the aerodynamics are
assumed to be periodic. The flap deflection angle δ is described by a harmonic function

δ = A sin(2πft),

where A is the amplitude, f is the frequency and t is the running variable time. Instead
of making use of the frequency f it is more common to use the non-dimensional reduced
frequency k, which is related to f via

k =
πfc

V
,

where c is the chord length and V is the free stream velocity. The experiment is performed
for reduced frequencies k = 0.1, 0.2, 0.3. PIV measurements are performed only at a
reduced frequency of 0.1, which corresponds to a frequency f = 1.34 Hz. The FSI case is
performed at zero angle of attack and 2 degrees amplitude flap deflection. The amplitude
of the plunge motion amounts to approximately 5 mm.

Measurements are performed using the measurement sensors described in section 2.1.3.
Furthermore, using PIV the entire two-dimensional flow field about the wing at mid span
is obtained in terms of a velocity vector field. The assumption of quasi steadiness enables
to apply phase averaging to the results. Phase averaging consists of averaging multiple
measurements that are taken at the same phase but in different cycles. Using phase
averaging the average characteristics are obtained and fluctuations are averaged out.

2.3 Results of the steady case

The outputs of the steady case as well as the unsteady case are obtained following the
procedure described in section 2.2. In this thesis only the results of the steady case
are used for uncertainty quantification due to the limited time resources and because
inferences can be made from the uncertainties in the steady part for the unsteady part of
the experiment. Therefore only the results of the steady case are presented and discussed
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here. In this section the raw data are presented; no corrections have been applied to these
data.

The steady measurements are performed at various angles of attack and flap angles ac-
cording to Table 2.4. The lift coefficient curves for varying angle of attack and flap angle
are shown in Figure 2.6. As expected, both curves show approximately linear behavior
and an increasing lift coefficient for increasing angle of attack or flap angle. Note that
the CL − α curve is not exactly linear for α between -3 and 3 degrees. The derivative
of the lift coefficient with respect to the angle of attack CLα ≈ 3.97 rad−1 and the lift
coefficient derivative with respect to the flap angle CLδ

≈ 1.93 rad−1. The fact that CLα

is approximately twice as large as CLδ
means that a change in angle of attack is two times

more effective for CL than a similar change in flap angle.

Figure 2.7 shows the moment coefficient for various angles of attack and flap angles. The
CM − α curve shows roughly constant behavior around CM ≈ −0.06. Figure 2.3 shows
that the two-dimensional results lie in the same range. In Figure 2.7b the CM − δ curve
shows linear behavior. The moment coefficient derivative with respect to the flap angle
CMδ

≈ −0.50 rad−1. A negative CMδ
means that an increase in the flap deflection angle

yields an increase in the pitch down moment.
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Figure 2.6: Experimental lift coefficient results shown separately for the angle of attack and
flap angle ranges.
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Figure 2.7: Experimental moment coefficient results shown separately for the angle of attack
and flap angle ranges.



Chapter 3

Simulation Methods

The fluid-structure interaction experiment is subject to various sources of uncertainty.
Uncertainty quantification methods will be used to gain insight into the influence of
uncertainties on the aerodynamic characteristics of the wind tunnel setup. Uncertainty
quantification requires deterministic results of the aerodynamic characteristics, which are
provided by simulation methods.

In this thesis two different simulation methods are selected to provide deterministic re-
sults. Section 3.1 describes the XFOIL panel method, which is used to perform two-
dimensional simulations of the flow about the airfoil. Section 3.2 discusses the Tornado
vortex lattice method, which is employed for including three-dimensional effects in the
calculations. Computational Fluid Dynamics methods are not used because they are rel-
atively expensive. In order to be able to compare between simulations and experimental
results, corrections are applied to the simulations, as discussed in section 3.3.

3.1 XFOIL Panel Method

XFOIL is a panel method implementation developed by Drela [2011] for two-dimensional
flow computations. Advantages of XFOIL are that it requires relatively less computa-
tional effort compared to common URANS codes and computations can be automated
for performing uncertainty quantification analyses. Furthermore, the geometric varia-
tions in the airfoil can be taken into account by XFOIL since it uses relatively many
surface panels compared to the VLM code employed in this thesis. The input consists of
a coordinate file of the DU96W180 airfoil with 201 coordinate points.

3.1.1 General Concept

XFOIL is an enhanced panel method based flow solver that includes compressibility and
viscous effects in the computations. The inviscid formulation of XFOIL is a linear-vorticity
stream function panel method. For velocities up to sonic conditions a compressibility
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correction is incorporated to correct for compressibility effects. Viscosity is taken into
account in the region near the airfoil surface and in the wake by employing an integral
boundary layer formulation. Options are included for either forced or free transition of the
boundary layer from laminar to turbulent. The transition location is predicted employing
the eN method. Furthermore, limited flow separation can be modeled by this flow solver.

3.1.2 XFOIL Settings

The XFOIL input conditions are chosen such that they reflect roughly the conditions
during the wind tunnel experiment. The viscous formulation is employed to include
boundary layer effects. Similar Reynolds and Mach numbers are used as in the experiment.
In XFOIL the boundary layer computations can be modified by forcing transition and
specifying the amplitude ratio Ncrit of the eN method. An amplitude ratio of 9 is employed
that corresponds to an average turbulence level in wind tunnels according to Drela [2011].

According to section 2.1.2, in the experiment tripping wires are glued to the wing at
xtr,s = 0.02c on the suction side and at xtr,p = 0.05c on the pressure side. The tripping
locations at the suction and pressure side are referred to by xtr,s and xtr,p respectively.
XFOIL computations are performed with tripping locations similar to the locations of the
tripping wires in the experiment and the outputs are corrected according to section 3.3. In
Figure 3.1b it is clear that the agreement between observational data and corrected XFOIL
simulations for the moment coefficient is bad. The discrepancy between simulations and
observations is believed to be caused mainly by model inadequacy of XFOIL and the
corrections. The choice is made to introduces changes in the XFOIL simulations to
improve on the moment coefficient results.

Since no checks are performed to assess the effectiveness of the tripping wires the transition
location remains unknown. Therefore a XFOIL study is performed to find the tripping
locations for which the XFOIL output agrees best with the experimental data. For various
tripping locations the lift coefficient curves cl − α and moment coefficient curves cm − α
are computed. After applying the corrections from section 3.3 these curves are compared
with the experimental data. Figure 3.1 shows that the tripping location has considerable
influence especially on the moment coefficient results. Visual inspection of the cm − α
curves yields that the curve corresponding to a tripping location of 0.60c agrees best with
the measured moment data.

tripping location transition location (α = 0) simulation discrepancy
xtr,s xtr,p xtr,s xtr,p ǫ∆ (cl) ǫ∆ (cm)

0.02 0.02 0.02 0.05 0.0579 0.0156
0.40 0.40 0.40 0.40 0.0842 0.0103
0.50 0.50 0.50 0.50 0.0886 0.0088
0.55 0.55 0.55 0.57 0.0891 0.0082
0.60 0.60 0.55 0.65 0.0876 0.0082
0.75 0.75 0.55 0.68 0.0843 0.0092
1.00 1.00 0.55 0.68 0.0839 0.0093

Table 3.1: Lift and moment coefficient simulation discrepancy of the XFOIL output with
respect to the measurement data for different forced transition locations.
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Figure 3.1: Corrected XFOIL results compared with measurement data. Simulations are
performed to obtain the lift coefficient cm and moment coefficient cm for various
tripping locations on the suction side (xtr,s) and on the pressure side (xtr,p).

Investigation of the discrepancy between simulation output and observations yields useful
information for selecting a tripping location. The simulation discrepancy of the XFOIL
output with respect to the measurement data is given by

ǫ∆ (cl) =

√(
clxtr

− clm

)2
,

where clxtr
the lift coefficient corresponding to a certain tripping location and clm the

measurement data. The simulation discrepancy averaged over the angle of attack is
presented in Table 3.1 together with the input tripping location and output transition
location at zero angle of attack. The output transition location can differ from the input
tripping location because the eN method is always active irrespective of the specification
of a forced transition location. Table 3.1 shows that tripping locations of 0.55c and
0.60c yield the smallest moment coefficient simulation discrepancy. From these two input
tripping locations the smallest lift coefficient simulation discrepancy is obtained for a
tripping location of 0.60c. Therefore, based on the simulation discrepancy results and the
curve shapes a tripping location of 0.60c at both suction and pressure side is selected for
XFOIL computations throughout this thesis.

A transition location of 0.60c is unlikely to occur in the experiment, since it means that
the tripping wires are very ineffective. Therefore, the XFOIL tripping location will not
correspond to a true physical quantity anymore, but rather to a value that yields the best
agreement between simulations and observations. Another approach to decreasing the
discrepancy in moment coefficient data would have been to use the experimental tripping
locations as XFOIL inputs and instead improve on the corrections.

3.1.3 Grid Convergence Study

A grid convergence study is performed to determine the optimal amount of panels on
the airfoil surface. Various grids are designed by choosing a range of number of panels



18 Simulation Methods

Npanels from 100 to the XFOIL limit of 350. The resulting cl − α curves and cm − α
curves are shown for the various grid sizes in Figure 3.2. Especially the curves of the
moment coefficient show differences between the finest grid and the grid corresponding to
300 panels.
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Figure 3.2: Curves of the lift and moment coefficient for various grid size computed by
XFOIL.

Npanels [-] t [s] ǫcl
[-] ǫcm [-]

Grid 1 100 0.11 0.0142 0.0161
Grid 2 200 0.24 0.0046 0.0051
Grid 3 300 0.92 0.0028 0.0031
Grid 4 350 1.70 n/a n/a

Table 3.2: XFOIL convergence study results summary. The computational effort is expressed
in evaluation time t. The average discretization error ǫcl,m

is computed using
the finest grid as a reference.

More information is provided by the discretization error, which is computed using the
finest grid solution as a reference. The discretization error of the lift coefficient ǫcl

is
computed as

ǫcl
=

√
(cli − ĉl)

2

|ĉl|
,

where cli is the lift coefficient corresponding to grid i and ĉl is the lift coefficient computed
for the finest grid. The same formula applies for computing the discretization error related
to the moment coefficient. The discretization errors averaged over the angle of attack are
shown in Figure 3.3. These graphs show a clear difference between the outputs of the
finest grid and the grid corresponding to 300 panels. A summary of the convergence study
results is presented in Table 3.2. In this table the computational effort is expressed in
evaluation time t.

Based on the fact that differences between the grids corresponding to Npanels = 300 and
Npanels = 350 are clearly present in the cm data, the finest grid with Npanels = 350
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Figure 3.3: XFOIL computed discretization errors in cl and cm averaged over angle of attack
for various grid size.

Geometry
Airfoil DU96W180
Number of panels Npanels 350

Flow conditions
Mode viscous
Reynolds number Re 7 · 105

Mach number Ma 0.06

Boundary layer
Tripping location

suction side xtr,s 0.60c
pressure side xtr,p 0.60c

Amplitude ratio Ncrit 9

Table 3.3: XFOIL input settings for the discretized geometry, flow conditions and boundary
layer parameters.
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is selected to be used throughout this thesis. The computation time of 1.7 seconds is
reasonable even for the evaluation of large input matrices such as used in uncertainty
quantification.

A summary of the XFOIL settings is presented in Table 3.3 including the flow conditions,
boundary layer parameters and number of panels.

3.2 Tornado Vortex Lattice Method

Tornado is a Matlab implementation of a Vortex Lattice Method (VLM) developed
by Melin [2000] for three-dimensional flow computations. This code is employed in the
current research because it enables to model the influence of input parameters that are
related to the fact that the experimental setup is three-dimensional. Furthermore, com-
putation runs are relatively cheap in terms of computation effort compared to for example
URANS codes.

3.2.1 General Concept

The vortex lattice method is based on potential flow theory. Potential flow theory can
be employed to perform computations for inviscid, irrotational and incompressible flows.
Tornado provides an option for compressibility corrections to computations of high sub-
sonic Mach number flows. Furthermore the method is limited to the linear part of the
CL − α curve, i.e. relatively small angle of attack. The vortex lattice method makes use
of basic solutions to Laplace’s equation, i.e. the equation that is central to potential flow
theory, to build up the solution. The basic solution employed by Tornado for its three-
dimensional computations is a horseshoe vortex. The geometry is divided into a finite
amount of panels. A lattice of vortex lines originates from the panels and propagates
into the wake. The strength of the vortices is computed using the zero normal velocity
condition at the surfaces. The wing is treated as a thin airfoil at the chord line. The
camber of the airfoil is taken into account by twisting the panel normal vectors according
to the gradient of the camber.

Numerically the vortex lattice method revolves around the inversion of a large matrix
to obtain the vortex strengths. The matrix inversion step requires a lot of computer
memory for large matrices. The computer’s memory therefore puts limits on the matrix
size and thereby on the grid size and accuracy of the computations. Furthermore, inter-
sections between vortex lines and collocation points can arise in the domain and cause
computational problems. Since the tangential velocity of a vortex in its center is infinite,
the contribution of an intersecting vortex in the collocation point will be infinite. The
Tornado VLM implementation deals with this computational difficulty by omitting the
contribution of intersecting or nearly intersecting vortex lines. Omission of certain vortex
contributions introduces errors. Therefore during the design of the mesh it should be
taken into account that preferably no intersecting vortex lines should be present.

The computations are performed using the DU96W180 profile being defined at 201 coor-
dinates. The input velocity is 21 m/s and the density is 1.225 kg/m3.
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3.2.2 Grid Convergence Study

A simplified geometric model of the experimental wind tunnel setup is used for the Tor-
nado computations, see Figure 3.4. The wing is modeled as a thin plate with adjusted
panel normals according to the wing camber. The wing chord length amounts to 0.5
meters and the span to 1.8 meters. The walls are modeled as flat plates at each side of
the wing with a height of 3 meters. Each wall is divided into two parts to model the slit
where the wing shafts stick through. The space between the front and the back part of
the walls amounts to 30 millimeters and runs entirely from the lower to the upper side.
The widths of the front and back part are 0.265 and 0.73 meters respectively. The wing
is positioned with respect to the walls such that the quarter chord point is in line with
the middle line of the slits. Furthermore, the vertical position of the wing is aligned with
half the height of the walls via the panel normals. Furthermore, changing the angle of
attack and flap angle do not yield changes in the lattice, which is advantageous regarding
the intersecting vortex lines.

The discretization error of the Tornado method is determined for various grid sizes. Tak-
ing into account the limitations of the method, as described in section 3.2.1, five grids are
designed. The successive grids are obtained from scaling up the number of panels in the
chord wise and span wise direction on each surface of the initially designed grid. Compu-
tations for each grid are performed for various angle of attack, i.e. α = −2,−1, 0, 1, 2◦ .

The discretization error related to a grid is computed using the finest grid solution as a
reference. The discretization error in the lift coefficient ǫCL

is computed as

ǫCL
=

√(
CLi − ĈL

)2

∣∣∣ĈL

∣∣∣
,

where CLi is the lift coefficient for grid i and ĈL is the lift coefficient computed for the
finest grid. The same formula applies for computing the discretization error related to
the moment coefficient CM . The average discretization error is obtained from averaging
discretization error values that are obtained for various angles of attack. In Table 3.4 for
each grid the number of panels Npanels, the computational effort expressed in evaluation
time t and the average discretization error ǫCL,M

are presented.

hwing [m] Npanels [-] t [s] ǫCL
[-] ǫCM

[-]

Grid 1 0.1333 104 0.5 0.1198 0.1789
Grid 2 0.0667 360 3.4 0.0289 0.0608
Grid 3 0.0333 1440 56.3 0.0080 0.0198
Grid 4 0.0222 3240 289.8 0.0039 0.0072
Grid 5 0.0167 5440 976.9 n/a n/a

Table 3.4: Grid study results of the Tornado vortex lattice method. For each grid the length
of a wing panel in the chord wise direction hwing, the total number of panels
Npanels, the computational effort expressed in evaluation time t and the lift and
moment coefficient discretization errors ǫCL,M

are presented.

The discretization error curves of the lift and moment coefficients are plotted versus the
number of panels in Figure 3.5. The discretization error curves show convergence for
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Figure 3.4: Simplified model of the wind tunnel setup used in the Tornado computations.
The airflow direction is aligned with the x-axis and approaches the setup from
the negative x-axis.
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Figure 3.5: Tornado grid convergence study results expressed in the discretization error av-
eraged over the angle of attack for the lift and moment coefficients.

increasing grid size. Based on the discretization errors for CL and CM and the wing panel
size hwing the order of accuracy of Tornado is determined as 1.5.

Tornado computations will mainly be used for modeling the influence of the gap width.
Since the gap width is a very small feature on millimeter level, a fine grid is required
to model it accurately. Therefore, despite the fact that grid 4 yields small discretization
errors and the fact that the computation time increases considerably for increasing grid
size, grid 5 will be used throughout this thesis.

3.3 Corrections

In wind tunnel experiments, effects are present that are usually not taken into account
in simulations. Corrections can be applied in order to be able to compare between wind
tunnel experiments and simulations. In this thesis the choice is made to correct the
simulation output data and leave the experimental output data unaltered. This approach
is convenient for performing uncertainty quantification when aspects of the corrections
are included.

Three corrections are applied to the simulation output data in a specific order. First,
section 3.3.1 discusses that the two-dimensional XFOIL computations are corrected for
three-dimensional effects, which are caused by the presence of a gap between the wing and
the side walls. Secondly, open wind tunnel corrections are applied to correct for streamline
curvature, see section 3.3.2. Finally a correction is made for the chord length discrepancy,
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which is deducted from geometry measurements, as described in section 3.3.3.

3.3.1 Gap Correction

The correction for the three-dimensional effects takes only into account the presence of
the gap between wing and side walls. The presence of a gap introduces wing tip vortices.
Based on the assumption that the wing tip vortices are the main three-dimensional fea-
tures in the flow only a gap correction is applied to account for three-dimensional effects.
The influence of the side walls and the presence of a slit in the side walls are assumed to
have minor influence on the flow.

The wing tip vortices cause a decrease in effective angle of attack and an increase of drag
by introducing induced drag. The gap correction is computed using the inviscid vortex
lattice method Tornado. The gap correction is applied to two-dimensional viscous XFOIL
computations. This approach is based on the assumption that viscosity has minor effect
on the corrections.
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Figure 3.6: Lift, drag and moment coefficient curves computed by Tornado for zero and non
zero gap size.
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Computations are performed using Tornado at zero gap size (∆g = 0 mm) and nonzero
gap size (∆g = 4 mm). Since the gap is very small the finest grid, i.e. grid number 5, is
used to model the small features accurately. Figure 3.6 shows the CL − α, CD − α and
CM − α curves for zero and non-zero gap size. Practically the correction consists of a
discrepancy term that is added to the XFOIL output. The lift coefficient discrepancy is
computed as

δCL = CL (α,∆g = 4mm) − CL (α,∆g = 0mm) ,

where CL (α,∆g) is the lift coefficient as a function of angle of attack α and gap size ∆g.
Dropping the argument α the lift coefficient discrepancy can be written as a function of
the zero gap size lift coefficient δCL

(
CL∆g=0

)
. A similar procedure is followed to obtain

the drag coefficient discrepancy δCD

(
CL∆g=0

)
and the moment coefficient discrepancy

δCM

(
CL∆g=0

)
as a function of the zero gap size lift coefficient. In order to obtain analytic

functions polynomial fitting is applied to the discrepancy data with order 5. The resulting
functions for the discrepancy terms are given by

δCL

(
CL∆g=0

)
= 10−2 ·

(
−9.3C5

L∆g=0
+ 22.8C4

L∆g=0
− 20.7C3

L∆g=0
+ 16.2C2

L∆g=0

+19.0CL∆g=0
− 0.8

)
,

δCM

(
CL∆g=0

)
= 10−3 ·

(
5.2C5

L∆g=0
− 11.9C4

L∆g=0
+ 9.3C3

L∆g=0
− 9.6C2

L∆g=0

−15.6CL∆g=0
− 2.5

)
,

δCD

(
CL∆g=0

)
= 10−4 ·

(
−14.0C5

L∆g=0
+ 27.0C4

L∆g=0
+ 4.5C3

L∆g=0
− 40.1C2

L∆g=0

−9.4CL∆g=0
+ 0.05

)
.
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(a) Lift coefficient data.
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Figure 3.7: Comparison of inviscid Tornado computations with and without slit at zero gap
size and two-dimensional viscous XFOIL computations.

Instead of the Tornado CL∆g=0
the two-dimensional viscous XFOIL cl is used as an input

for the discrepancy term. This is based on the assumption that the zero gap size lift coef-
ficient computed by Tornado compares reasonably well with the viscous two-dimensional
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lift coefficient computed by XFOIL. A justification of this assumption is obtained from
a comparison of Tornado computations with XFOIL computations. In Figure 3.7 uncor-
rected XFOIL simulations are presented together with Tornado computations at zero gap
size for cases that a slit is present and absent in the side walls. The maximum differ-
ence amounts to 0.1 in CL for large angle of attack. For angles of attack around zero
the difference is very small. The uncertainty analysis is meant to provide uncertainty
characteristics that can be used to make inferences for the fluid-structure interaction ex-
periment. The fluid-structure interaction experiment is performed at zero angle of attack.
Therefore, the difference between the curves is acceptable.

Finally the corrected lift, drag and moment coefficient are obtained from

CLg = cl + δCL (cl) ,

CDg = cd + δCD (cl) ,

CMg = cm + δCM (cl) ,

where CLg , CDg and CMg are the coefficients corrected for the gap. The coefficient
discrepancy terms as a function of the XFOIL cl are denoted by δCL (cl), δCD (cl) and
δCM (cl).

For the lift coefficient the assumption is made that the Tornado outputs for zero gap
width computations correspond approximately to the two-dimensional XFOIL results.
For the moment coefficient data this assumption is problematic. Figure 3.7b shows large
discrepancies between XFOIL and Tornado computations. The XFOIL simulations agree
with the moment coefficient data obtained from a two-dimensional experiment, see Fig-
ure 2.3b. The introduction of a slit in the side walls increases the discrepancy. The fact
that the moment coefficient curve computed by Tornado shows considerable differences
with two-dimensional results introduces probably model inadequacy errors.

3.3.2 Wind Tunnel Corrections

Wind tunnel flows differ from aerodynamic flows encountered by aircraft in real flight.
Brooks et al. [1984] developed a method to correct for flow effects of open jet wind tunnels.
The two-dimensional open wind tunnel corrections treat the phenomenon of streamline
curvature. The method is based on the assumption of a constant (ambient) pressure jet
flow boundary. Furthermore, stream wise buoyancy and flow blocking of the model and
the wake are considered negligible since the air stream is free to expand in a normal
manner. Instead of correcting the experimental data the corrections are applied in a
reverse sense to the simulations in this thesis.

The streamline curvature corrections affect the drag and moment coefficient and the slope
of the CL − α curve. The lift coefficient for simulation outputs CLg is equal to the wind
tunnel result CLt

CLt = CLg ,

where the subscript t refers to wind tunnel conditions. Note that this does not mean that
the lift curve remains unchanged, since corrections for the angle of attack yield changes
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in the lift curve. The corrected wind tunnel drag and moment coefficient are given by

CDt = CDg −
(
−
√

3σ

π
CLt

)
CLt

CMt = CMg +
σ

2
CLt ,

where σ = π2

48

(
c
ht

)2
, c refers to the airfoil chord length and ht to the tunnel height. The

lift curve slope is affected by correcting the angle of attack as

αt = α +

√
3σ

π
CLt +

2σ

π
CLt +

σ

π
(4CMt) .

The application of these corrections to the gap corrected simulation data yields the equiv-
alent wind tunnel values of the simulation outputs.

3.3.3 Chord Length Correction

The chord length of the DU96W180 wing is designed to be 500 millimeter. However, man-
ufacturing of the flap and the hinge connections to the wing have introduced discrepancies
between the DU96W180 geometry and the actual geometry. Careful investigation of the
CMM and Photogrammetry measurements, which are described in chapter 5, reveals that
the average chord length of the wing amounts to 505 millimeter, with an uncertainty of
less than 1 millimeter. The normalization of the experimental data is based on a chord
length of 500 millimeter, according to the design. To account for this discrepancy the
computational results of the aerodynamic coefficients will be multiplied with a correction
factor of 1.01. The chord length discrepancy is introduced as a correction because it is
an uncertain variable and it differs from the design value.
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Chapter 4

Uncertainty Quantification

Methodology

Uncertainty quantification provides means to understand the reasons for the failure to
reproduce the experimental results with simulations. Uncertainties exist at the side of
the experiment and at the side of the simulation model. In this thesis uncertainty quan-
tification is used to obtain the uncertainty characteristics of the experimental observa-
tions. Complementing the experimental results with uncertainty characteristics provides
a strong basis for computer code validation.

Experimental observations as well as the simulations are subject to various errors. A
clear distinction between various sources of error is required for the understanding of
the reasons of uncertainties. A classification of the various sources of error is given in
section 4.1. The framework for uncertainty quantification is described in section 4.2.

In this thesis various methods are employed for uncertainty quantification. The kriging
method and the related cokriging method are interpolation methods, which are described
in section 4.3. Section 4.4 discusses the probabilistic collocation method, which is used
for interpolation, uncertainty analysis and sensitivity analysis. Finally in section 4.5
the Markov chain Monte Carlo method is explained, which is widely used for Bayesian
inference.

4.1 Classification of Errors

Computer codes virtually never provide results that are equal to experimental observa-
tions. The discrepancies between code outputs and experimental observations are caused
by various sources of error. A clear classification of the sources of errors is indispensable
for the understanding of the reasons of uncertainty. Kennedy & O’Hagan [2001a] provide
a widely adopted classification of errors according to their source.

29
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Parametric uncertainty Due to a lack of knowledge there can be uncertainty about
some code inputs, such as the angle of attack or the wind velocity. Parametric un-
certainty implies uncertainty on code outputs including true randomness in system
parameters, even for a deterministic model.

Model inadequacy No model is an exact representation of reality, and modeling as-
sumptions may lead to greater or lesser error in results. Model inadequacy refers
to the difference between the model output at true values of input parameters and
reality. Since the real system may itself exhibit physical randomness, inadequacy is
defined as the difference between the true mean value of the real process and the
code output at true input values.

Discretization error The numerical error resulting from solving a model described in
Partial Differential Equations (PDEs) on a discrete mesh is referred to as the dis-
cretization error. The discretization error is a function of the numerical scheme and
is a very important source of error when solving PDEs. The discretization error can
be reduced by refining the mesh, which normally increases the computational costs.

Residual variability Computer codes are supposed to predict the value of some real
process under conditions specified by the inputs. In practice, the outputs may not
always take the same value for the same inputs. This variability may be caused by
the fact that the process itself is stochastic, or due to the fact that more conditions
need to be specified. Furthermore, in this error also finite-precision arithmetic is
taken into account.

Observation error The difference between the true value of a physical quantity and its
experimentally measured value is referred to as the observation error. When making
use of experimental data we should allow for the possibility of measurement errors.
In case measurement errors are unbiased they are termed observational noise.

The influence of the first three sources of error can generally be estimated using a sim-
ulation code or comparison simulation outputs with experimental observations. The ob-
servation error needs to be determined or estimated when performing experiments. On
the basis of the error estimates the code can be said to correctly represent reality to a
specified confidence. Confidence levels are provided by uncertainty quantification using
the error estimates.

4.2 Bayesian Inference

In aerodynamics, complex computer codes are usually employed to perform uncertainty
quantification. Bayesian statistics provides a useful framework to successfully obtain
uncertainty characteristics with reasonable computation effort. The uncertainty quantifi-
cation methods discussed in this chapter are based on a Bayesian framework or can be
incorporated into Bayesian inference.

Bayesian inference boils down to combining prior knowledge and observations for pos-
terior inference. Wikle & Berliner [2006] explain the concept of Bayesian inference in
a framework consisting of three steps. The first step is to formulate a full probability
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model that comprises a joint probability distribution of all observable and unobservable
components of interest, e.g. data, process and parameters. The second step is to find the
conditional distribution of the unobservable quantities given the observed data by apply-
ing Bayes’ theorem. The last step is to evaluate the ability of the model to adequately
characterize the processes of interest.

Bayesian inference is mathematically described by Bayes’ theorem

p(x|y) =
p(y|x)p(x)

p(y)
, (4.1)

where p refers to a probability distribution, x are the unobservable quantities of in-
terest and y the observed data. The four components of the formula have their own
specific meaning. The data distribution p(y|x) refers to the probability distribution
of the data, given the unobservable quantities. The prior distribution p(x) quanti-
fies the a priori knowledge of the unobservable quantities. The marginal distribution
p(y) =

∫
p(y|x)p(x)dx is also known as the prior predictive distribution. It can be solved

analytically for a very limited number of cases since the integral gets easily too com-
plicated. It is mainly a normalization term that is often left out. Finally, the posterior
distribution p(x|y) is the update of the prior knowledge about the unobservable quantities
p(x) given the actual observational data y. In case the normalization term is left out in
Bayes’ formula it is described by

p(x|y) ∝ p(y|x)p(x). (4.2)

This formula states that the posterior distribution is proportional to the data distribu-
tion multiplied by the prior distribution. Bayes’ formula expresses the essence of Bayesian
statistics as a framework that combines prior knowledge and observations to make infer-
ences about uncertain processes.

4.3 Kriging

Kriging is a technique employing Gaussian processes for the interpolation of outputs of
simulations or experiments. Since many functions are generally very complex and expen-
sive, Gaussian processes are used to model the outputs. Kriging provides predictions of
a process at unevaluated inputs and corresponding kriging uncertainty measures. Prior
knowledge can be included in the interpolation process by specifying a mean and covari-
ance function. The kriging approach employed here is assembled from work of Wikle &
Berliner [2006], Kennedy & O’Hagan [2000] and Forrester et al. [2007]. Starting from
the more basic universal kriging method in section 4.3.1 the more complicated cokriging
method will be explained in section 4.3.2. A simple example of kriging applied to an
analytic function reveals the capabilities of cokriging, see section 4.3.3.

4.3.1 Universal Kriging

Universal kriging is an interpolation method that is applicable to one data source. It differs
from other kriging methods, such as ordinary kriging, in that the mean is a function of the
covariates. The description employed here is chosen such that it can easily be extended
to cokriging.
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Mathematical Framework

Suppose we have a process η that can be an experiment or a simulation code. At a set of n
design input data D = {x1, . . . , xn} the process is evaluated resulting in n observations z.
The prediction of the process at untried inputs x can be modeled by a Gaussian process
with mean function

m(x) = h(x)T β + t(x)T V −1(z − Hβ), (4.3)

where h is a vector of regression functions and β a vector of corresponding regression
parameters. The regression parameters and matrix H are given by

β =
(
HT V −1H

)−1
HT V −1z, H =




h(x1)
T

...
h(xn)T


 .

The second part of Equation (4.3) consists of a weighted sum of the difference between
data and estimated mean where t(x) is the covariance between data and untried inputs
given by

t(x)T = σ2A (x,D)

Furthermore, V is the data covariance matrix expressed by

V = σ2A (D,D) + ǫIn,

where σ2 is the data standard deviation, or spread of the data around the kriging mean,
and ǫ the process output uncertainty. Since V is a symmetric positive definite matrix a
Cholesky decomposition is applied to reduce computation time. The matrix of correlations
between two points in the input data set D, with i, j element, is given by

A (xi, xj) = c (xi, xj) ,

where

c
(
x, x′

)
= exp

{
− 1

2b2

(
x − x′

)T (
x − x′

)}
.

The correlation length b defines the degree of influence one data point has on another
data point. The prediction covariance function can be written as

cov
(
x, x′

)
=

(
σ2c

(
x, x′

)
+ ǫIn

)
− t(x)T V −1t(x)

+
(
h(x) − HT V −1t(x)

)T (
HT V −1H

)−1 (
h(x) − HT V −1t(x)

)
. (4.4)

For x = x′ the prediction covariance function, Equation (4.4), gives an estimate of the
uncertainty on the prediction of the process η at untried inputs x.

Estimation of Hyperparameters

The two parameters that need to be chosen are the correlation length b and the data
standard deviation σ2. These parameters are called hyperparameters. Forrester et al.
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[2007] shows that a closed form expression can be obtained to determine the data standard
deviation from a maximum likelihood estimate (MLE) as

σ2 =
(z − Hβ)T [A (D,D) + ǫIn] (z − Hβ)

n
,

where n is the number of elements in the data vector z. The b hyperparameters can be es-
timated from maximizing the distribution of the data conditional on the hyperparameters,
which is given by

p
(
z|b, σ2

)
=

1

(2π)k/2 |σ2A (D,D) + ǫIn|1/2
·

exp

(
−1

2
(z − β1n)T

[
σ2A (D,D) + ǫIn

]−1
(z − β1n)

)
. (4.5)

This distribution function is obtained using Bayes’ formula and taking weak priors for
the hyperparameters. Taking the logarithm of Equation (4.5) it can be shown that we
should minimize

log |σ2A (D,D) + ǫIn| + (z − β1n)T [σ2A (D,D) + ǫIn

]−1
(z − β1n) (4.6)

to choose b. After having determined the hyperparameters predictions can be made using
Equation (4.3) and prediction uncertainty estimates are obtained from Equation (4.4).

4.3.2 Cokriging

Cokriging is a variant of kriging that enables to combine various sources of data for
accurate prediction. A clear description of the method is given in Kennedy & O’Hagan
[2000]. In the context of this research only two sources of data are considered. However,
the method can easily be extended to multiple data sources. Very often in aerodynamic
simulations various codes modeling the same physical process are available, each one
having its own level of fidelity. Low fidelity codes are usually cheap to run whereas high
fidelity codes are often complex and expensive to run. Combining many data from a low
fidelity code and few data from a high fidelity code can result in fast predictions of the
process with a higher accuracy then the low fidelity source. Although cokriging is very
similar to kriging the full equations will be given here for notational clearness.

Autoregressive Model

For each data set t = 1, 2, let Dt be the design set consisting of the nt input points

x
(t)
1 , . . . , x

(t)
nt . The output data of each set zT

t =
(
zt

(
x

(t)
1

)
, . . . , zt

(
x

(t)
nt

))
are combined

into the total output data vector zT =
(
zT
1 , zT

2

)
. The object of inference is the high

fidelity process conditional on all the data, i.e. [z2|z].

Using a kind of Markov property to relate the two data sets, the following assumption
about the low fidelity process z1 and the high fidelity process z2 is made

cov
{
z2(x), z1(x

′)|z1(x)
}

= 0
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for all x′ 6= x. This assumption implies that given the point z1(x) no more can be learned
about z2(x) from any other output z1(x

′) for all x′ 6= x. In other words, z1 provides
information about z2(x) only at the same input x. Based on the Markov assumption and
the notion of stationarity of zt(x) over the x space for each t, an autoregressive model is
introduced as

z2(x) = ρ1z1(x) + δ2(x), (4.7)

where ρ1 is a kind of regression parameter and the discrepancy term δ2 is independent of
the low fidelity process z1. The discrepancy term δ2 is modeled as a stationary Gaussian
process, conditional on the hyperparameters β2 and σ2

2 , with mean hT β2, where h is
a vector of regression functions, and covariance function c2(x, x′) = cov {δ2(x), δ2(x

′)}.
The low fidelity process also is modeled as a stationary Gaussian process, conditional
on hyperparameters β1 and σ2

1, and independent of δ2. For each data set a covariance
function is assumed of the form

ct(x, x′) = σ2
t exp

{
−
∑

i

1

2b2
ti

(
xi − x′

i

)2
}

,

where bti is the correlation distance corresponding to the level t code and to the ith input
variable.

The autoregressive model, Equation (4.7), employs linear regression to predict the output
of a system at unevaluated input points based on available outputs.

Prediction of High Fidelity Process

The probability distribution of the high fidelity data conditional on all the data and
the hyperparameters [z2|z, φ] is modeled as a Gaussian process. The parameters β can
be integrated out analytically, but the collection of hyperparameters consisting of φ =(
σ2

1 , σ
2
2 , b1, b2, ρ1

)
needs to be specifically estimated. The mean function of the distribution

of the high fidelity process is given by

m(x) = h′(x)T β + t(x)T V −1(z − Hβ), (4.8)

where

h′(x)T =
(
ρ1h(x)T , h(x)T

)
, H =




h
(
x

(1)
1

)T
0

...
...

h
(
x

(1)
n1

)T
0

ρ1h
(
x

(2)
1

)T
h
(
x

(2)
1

)T

...
...

ρ1h
(
x

(2)
n2

)T
h
(
x

(2)
n2

)T




,

β = (β1, β2)
T =

(
HT V −1H

)−1
HT V −1z,
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t(x)T = cov
{
z2(x), zT

}
=
(
ρ1σ

2
1A1 ({x} ,D1) , ρ2

1σ
2
1A1 ({x} ,D2) + σ2

2A2 ({x} ,D2)
)
,

The data covariance matrix V is given by

V =

(
σ2

1A1 (D1,D1) + ǫ1In1 ρ1σ
2
1A1 (D1,D2)

ρ1σ
2
1A1 (D2,D1) ρ2

1σ
2
1A1 (D2,D2) + σ2

2A2 (D2,D2) + ǫ2In2

)
.

The measurement uncertainty ǫt is put on the diagonal of the data covariance matrix
V . In order to reduce computation time Cholesky decomposition is applied to the data
covariance matrix. The element i, j of the matrix of correlations At (Dk,Dl) between data
sets Dk and Dl is given by

At

(
x

(k)
i , x

(l)
j

)
= exp

{
−
∑

m

1

2b2
tm

(
x

(k)
im − x

(l)
jm

)2
}

for all x
(k)
i ∈ Dk and x

(l)
j ∈ Dl. The covariance function for [z2(x)|z, φ] is given by

cov
(
x, x′

)
=

(
ρ2
1

(
c1

(
x, x′

)
+ ǫ1In1

)
+
(
c2

(
x, x′

)
+ ǫ2In2

))
− t(x)T V −1t(x′)

+
(
h′(x) − HT V −1t(x)

)T (
HT V −1H

)−1 (
h′(x′) − HT V −1t(x′)

)
,(4.9)

where ǫt is the output uncertainty for each data set and

ct(x, x′) = σ2
t exp

{
−
∑

i

1

2b2
ti

(
xi − x′

i

)2
}

.

Estimation of Hyperparameters

The hyperparameters φ can be estimated in a Bayesian way by assuming priors and
estimating the posterior or by numerical optimization using the data distribution. The
distribution of the data conditional on the hyperparameters φ can be written as the
product

p(z|φ) = p
(
z2|z1, ρ1, b2, σ

2
2

)
p
(
z1|b1, σ

2
1

)
. (4.10)

From the Markov property, as discussed earlier, it follows that the hyperparameters(
b1, σ

2
1

)
can be estimated separately from

(
ρ1, b2, σ

2
2

)
by maximizing each term in the

product (4.10). Using the same derivation as followed for Equation (4.6) it can be shown
that b1 can be estimated by minimizing

log
∣∣σ2

1A1 (D1,D1) + ǫ1In1

∣∣+ (z1 − β1H11)
T [σ2

1A1 (D1,D1) + ǫ1In1

]−1
(z1 − β1H11) ,

and σ2
1 can be obtained from a MLE as

σ2
1 =

(z1 − β1H11)
T [A (D1,D1) + ǫ1In1 ] (z1 − β1H11)

n1
.

The hyperparameters of the high fidelity dataset ρ1, b2, σ
2
2 are estimated using z2 and z1

data because the Markov property implies that the parameters depend on both datasets.
The hyperparameters ρ1, b2 are chosen to minimize

log
∣∣σ2

2A2 (D2,D2) + ǫ2In2

∣∣+ (d2 − β2H22)
T [σ2

2A2 (D2,D2) + ǫ2In2

]−1
(d2 − β2H22) ,
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and σ2
2 is obtained from a MLE as

σ2
2 =

(d2 − β2H22)
T [A2 (D2,D2) + ǫ2In2 ] (z2 − β2H22)

n2
.

In these equations the difference between the outputs of both datasets is given by d2 =
z2 − ρ1z1 (D2), where z1 (D2) denotes the vector of outputs from z1 at input dataset D2.
z1 (D2) can be obtained from either evaluating process z1 or predicting the values using
kriging. Furthermore, Hii is the iith part of matrix H given by

Hii =
(
h
(
x

(i)
1

)
, . . . , h

(
x(i)

ni

))T
.

Once the hyperparameters are found, cokriging predictions can be performed to obtain
interpolated values.

4.3.3 Simple Cokriging Example

The capabilities of cokriging compared to kriging can be shown by a simple example.
Cokriging is performed on an analytic function y = f(x) given by

f (x) = x cos

(
1

2
x

)
− sin (2x) .

This function is employed to generate the low fidelity data Dlf and high fidelity data
Dhf . Low fidelity data is obtained from function f (x) by adding a discrepancy term
δ (x) = 3 − 1

2x and introducing noise with a standard deviation σlf . The distribution for
the low fidelity data can be written as

Dlf ∼ N (f (x) + δ (x) , σlf ) , σlf = 0.3

where N (·, ·) refers to a normal distribution. High fidelity data is obtained from function
f (x) by introducing noise with a standard deviation σhf as

Dhf ∼ N (f (x) , σhf ) , σhf = 0.01.

Usually high fidelity model evaluations are expensive, therefore few high fidelity data
is available. Since low fidelity models are usually cheap to evaluate many low fidelity
data is available. Kriging is applied using only the high fidelity data and cokriging using
both the low fidelity dataset and the high fidelity dataset. The results are presented
in Figure 4.1. Figure 4.1a shows clearly that kriging using the high fidelity data yields
predictions that do not follow the original function f (x) . However, applying cokriging
to the noisy low fidelity data and the accurate but few high fidelity data improves the
prediction considerably, see Figure 4.1b. The cokriging prediction follows very accurately
the analytic function f (x). This simple example shows clearly the capabilities of the
cokriging method by using few expensive high fidelity data and many cheap low fidelity
data to obtain accurate predictions.
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(a) Kriging of high fidelity data.

x

y

low fidelity data

high fidelity data

cokriging prediction

exact f (x)

0 2 4 6 8 10
-10

-5

0

5

(b) Cokriging of low fidelity and high fi-
delity data.

Figure 4.1: Comparison of the application of kriging and cokriging to a simple analytic
function.

4.4 Probabilistic Collocation

The probabilistic collocation (PC) method is a non-intrusive Polynomial Chaos method
that can be used for the propagation of uncertainties. The PC method employs polyno-
mial chaos expansions to model the solution of each output variable depending on the
uncertain inputs. Polynomial chaos expansions are constructed based on Lagrange poly-
nomials. The Lagrange interpolating polynomials pass through collocation points, which
correspond to the Gauss quadrature points. The Gauss quadrature points are based on
the probability distributions of the uncertain parameters. Exact solutions are obtained by
performing deterministic runs at the collocations points. The result of PC is an approx-
imating distribution function of the solution. Approximations of the mean and variance
as well as sensitivity measures can be obtained by integration of the solution. The PC
approach used here is mainly taken from work of Loeven & Bijl [2008] and Loeven [2010].

4.4.1 Polynomial Chaos Expansion

The solution is modeled using polynomial chaos expansions by

u (x, ω) ≈
Np∑

i=1

ui (x)Li (ξ (ω)) , (4.11)

where the solution u (x, ω) is a function of inputs x and the random event ω ∈ Ω, and
Np is the number of collocation points. Furthermore, ui (x) is the solution u (x, ω) at
collocation point ωi obtained by a deterministic run, Li is the Lagrange interpolating
polynomial chaos corresponding to the collocation point ωi and ξ is the multidimensional
random basis ξ =

{
ξ1, . . . , ξn

}
for n uncertain parameters. The Lagrange interpolating

polynomial is a function in terms of the random variable ξ(ω), which is chosen to be
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uniformly distributed, i.e. ξ(ω) = U(−1, 1), such that the uncertain input parameter
a(ω) is a linear transformation of ξ(ω). The Lagrange polynomial chaoses are given by

Li (ξ (ω)) =

Np∏

j=1,j 6=i

ξ (ω) − ξ (ωj)

ξ (ωi) − ξ (ωj)
, (4.12)

with Li (ξ (ωj)) = δij . The Lagrange interpolating polynomial chaos Li (ξ (ω)) passes
through the Np collocation points. The collocation points correspond to the Gauss quadra-
ture points used to integrate the function u (x, ω) in the ω domain.

4.4.2 Collocation Points

The collocation points are computed for each uncertain parameter ξj , j = 1, . . . , n sepa-
rately in one-dimensional space. The collocation points for multiple uncertain parameters
are obtained from tensor products of one-dimensional collocation points. For notational
convenience the index j will be dropped from here on. The total number of colloca-
tion points Np for n uncertain parameters becomes Np = (p + 1)n for an order p PC
approximation. At each collocation point a deterministic solve is required, implying Np

solves.

The method to find suitable collocation points and corresponding weights makes use of the
Golub-Welsch algorithm, which is developed by Golub & Welsch [1969]. This algorithm
requires the recurrence coefficients of polynomials that are orthogonal with respect to
the weighting function w (ξ) of the integration. The recurrence coefficients are computed
using the discretized Stieltjes procedure.

Orthogonal polynomials with respect to the weighting function of the element are con-
structed in each element using the recurrence relation

Ψ0 (ξ) = 0, Ψ1 (ξ) = 1,

Ψi+1 (ξ) = (ξ − αi) Ψi (ξ) − βiΨi−1, i = 2, . . . , Np. (4.13)

The recurrence coefficients αi and βi are determined by the weighting function w (ξ)

and {Ψ (ξ)}Np

i=1 is a set of orthogonal polynomials with Ψi (ξ) = (ξ)i + O
(
(ξ)i−1

)
, i =

1, . . . , Np. The recurrence coefficients are computed as

αi = (ξΨi,Ψi)
(Ψi,Ψi)

i = 1, . . . , Np, (4.14)

βi = (Ψi,Ψi)
(Ψi−1,Ψi−1) i = 2, . . . , Np, (4.15)

where (·, ·) denotes an inner product defined by

(f (ξ) , g (ξ)) =

∫
f (ξ) g (ξ)w (ξ) dξ. (4.16)

The obtained recurrence coefficients form the inputs of the Golub-Welsch algorithm to
compute the collocation points ξi and corresponding weights wi. From the recurrence
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coefficients a Jacobi matrix is constructed as

J =




α1
√

β2 /O√
β2 α2

√
β3

. . .
. . .

. . .√
βNp−1 αNp−1

√
βNp

/O
√

βNp αNp




. (4.17)

The collocation points ξi, i = 1, . . . , Np are the eigenvalues of the Jacobi matrix J . The
weights are found by wi = β1v

2
1,i, i = 1, . . . , Np, where v1,i is the first component of

the normalized eigenvector corresponding to eigenvalue ξi. The collocation points ξi are
mapped from the ξ-domain to the ω-domain using the probability distribution of ξ as

ωi = Fξ (ξi) , i = 1, . . . , Np.

For multiple uncertain parameters the collocation points are obtained using tensor prod-
ucts of the one-dimensional vectors containing the collocation points of each ω. The
corresponding weights are found by using tensor products similar as for the collocation
points. After applying the tensor products a Np×n-matrix can be made of the collocation
points, where each row i corresponds to collocation point ωi, and a Np-vector of weights
wi. Note that now a new ordering is adopted such that the index i refers to a different
ordering.

4.4.3 Uncertainty Analysis

The main output of interest is the expansion of the solution in the ω domain. The PC
expansion of the random variable u is written as

u (x, ω) ≈
Np∑

i=1

ui (x)Li (ξ (ω)) , (4.18)

where ui (x) is the output at collocation point ωi and obtained from a deterministic
computation. The output variable u can for example be the lift coefficient or the drag,
which are random variables due to uncertain input variables such as the angle of attack
or the flap angle. The mean and variance of the solution are found by

µu =

Np∑

i=1

ui(x)wi,

σ2
u =

Np∑

i=1

(ui(x))2wi −




Np∑

i=1

ui(x)wi




2

.

where wi are the weights corresponding to the collocation points ωi. When multiple
uncertain parameters are included, the mean and variance indicate the total combined
effect of all uncertain parameters.
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4.4.4 Sensitivity Analysis

Probabilistic collocation offers possibilities for sensitivity analysis of an output variable
to the various uncertain input parameters. The procedure described here makes use
of independent distributions on the input parameters, or marginalized distributions in
case of dependent input parameters. Sensitivity analysis can be used to select the most
important parameters out of the complete set of uncertain parameters. The efficiency of
PC uncertainty analyses can be greatly increased when reducing the amount of uncertain
parameters to only the most important ones.

The sensitivity derivative is defined as the partial derivative of the solution u(x, ω) with
respect to the uncertain parameter a(ω). The approximation of the derivative is obtained
from differentiation of the polynomial chaos expansions of the solution, Equation (4.18),
with respect to ξ(ω) yielding

∂u (x)

∂ξ
≈

Np∑

i=1

ui (x)
∂Li (ξ (ω))

∂ξ
,

where Np = p+1, p is the order of the approximation. For a second order approximation,
i.e. Np = 3, the partial derivative can be written as

∂u(x)

∂ξ
= u1(x)

{
ξ (ω2) − ξ (ω3)

(ξ (ω1) − ξ (ω2)) (ξ (ω1) − ξ (ω3))

}
+

u2(x)

{
2ξ (ω2) − ξ (ω1) − ξ (ω3)

(ξ (ω2) − ξ (ω1)) (ξ (ω2) − ξ (ω3))

}
+

u3(x)

{
ξ (ω2) − ξ (ω1)

(ξ (ω3) − ξ (ω1)) (ξ (ω3) − ξ (ω2))

}
,

where ui(x) indicates the ith collocation point for uncertain parameter a or random
variable ξ. The uncertain parameter a is related to the random variable ξ via a linear
transformation as

a = Aaξ + Ba, (4.19)

with constants Aa and Ba. Using Equation (4.19) the sensitivity derivative of the solution
with respect to uncertain parameter a can be written as

∂u(x)

∂a
=

∂u(x)

∂ξ

∂ξ

∂a
=

1

Aa

∂u(x)

∂ξ
.

A comparison between the sensitivity derivatives for the most important uncertain pa-
rameters can be made using the scaled sensitivity derivative. The scaled derivative is
obtained by multiplying the derivative of the solution with respect to parameter a with
the corresponding standard deviation σa. Since only independent input parameters will
be regarded during the sensitivity analysis combined sensitivity derivatives will not be

given. The scaled sensitivity derivative ∂̂u
∂a is given by

∂̂u

∂a
= σa

∂u

∂a
.

The most important parameters can easily be determined by selecting the largest scaled
derivatives. Note that the scaled derivative refers to linear influences of the input param-
eters on the output variables. The possibility exists that a parameter has a small scaled
derivative but a large influence due to quadratic effects.
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4.4.5 PC Approximation Convergence Study

Before performing a full probabilistic collocation study, a convergence study is needed
to determine the desired order of approximation p. The convergence study consists of
computing the approximation error for various orders of approximation and choosing an
appropriate approximation order using the resulting error outputs.

The approximation error is estimated with respect to a high order approximation. The
estimated error of the approximated variable u for a pth order approximation is computed
by

ǫu =

√∑Npa
i=1 wi (ûi − upa

i )
2

∑Npa
i=1 wiu

pa

i

, (4.20)

where Npa is the number of collocation points, upa

i are the results of deterministic solves

for the variable at the collocation points, all corresponding to a (pa)
th order approxima-

tion. The ûi are the approximated values at the collocation points of the (pa)
th order

approximation using a pth order approximation. Usually the accurate approximation of
order pa is one order higher than the highest order approximation for which the error is
estimated.

4.5 Markov Chain Monte Carlo Method

Monte Carlo methods are a class of widely applied integration methods. The Markov
chain Monte Carlo (McMC) method is an extension to the basic Monte Carlo method.
McMC combines advanced sampling techniques with the relatively simple Monte Carlo
principle. This method is especially useful for Bayesian inference techniques to explore
complex posterior distributions.

4.5.1 Monte Carlo Principle

For complex multivariate functions it is often difficult to obtain a direct expression of the
response as a function of the output. Monte Carlo methods especially can be used to
explore the output distribution of a complex function. Monte Carlo methods depend on
a large number of function evaluations over a range of inputs. A detailed discussion of
Monte Carlo methods is given in Liang et al. [2010]. The basics of the method can be
summarized in a four step approach:

1. The domain of interest of the complex function inputs is defined and probability
distributions are specified on the input variables.

2. A large number of input sets is generated from the probability distribution by a
computer based random generator.

3. Deterministic runs of the complex function are made at the input sets to obtain
realizations at the randomly chosen points from the input space.
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4. The outputs of the function realizations are collected and inferences can be made
on the outputs. As an example, a response surface can be fitted to the outputs
or inferences about the probability distribution can be made, depending on the
application.

The fact that a large number of computer code realizations is required for Monte Carlo
methods limits the applicability to relatively low cost computer codes. Extensions of the
basic Monte Carlo method are available to increase efficiency and applicability of the
method.

4.5.2 Markov Chains and the Metropolis Hastings Algorithm

The basic Monte Carlo approach generally requires a large number of realizations to
approximate a complex output distribution. In order to reduce computation time and
increase efficiency more sophisticated sampling methods can be used. Markov chains can
be employed to obtain increased efficiency by sampling from the posterior distribution
instead of a chosen input distribution.

Markov chain Monte Carlo methods employ the Markov property to construct a Markov
chain by sampling from probability distributions. The Markov property implies that given
a present state, the future state only depends on the present state and is independent of
all past states. A Markov chain is a sequence of random variables constructed using the
Markov property.

A two-step approach to construct reversible Markov chains is proposed by Metropolis et
al. [1953] and generalized by Hastings [1970]. The first step of this algorithm consists of
specifying a proposal distribution with probability density function q(y|x). In Metropolis’
approach this proposal distribution has to be symmetric, but Hastings generalized the
method to include asymmetric proposal distributions. Starting from a chosen initial
distribution the subsequent samples y are drawn from the proposal distribution q(y|x).
In the second step the draws from q(y|x) are either accepted or rejected using the output
of the posterior distribution f , such that the resulting Markov chain is reversible. The
acceptance ratio is defined as

α(xt, y) = min

{
1,

f(y)q(xt|y)

f(xt)q(y|xt)

}
. (4.21)

The new sample xt+1 is set to y with probability α(xt, y), and xt+1 = xt with the remaining
probability 1 − α(xt, y). Practically this means that the acceptance ratio is compared to
a sample U that is drawn from the uniform (0, 1) distribution. If U ≤ α(xt, y) the future
sample is set to xt+1 = y, otherwise the future sample is set to the present sample, i.e.
xt+1 = xt.

In practical applications the data vector is large and the output of posterior distributions
is often very small. In order to stay within the computational range of Matlab in
this thesis the logarithm of the posterior distribution is used. When working with the
logarithm of the posterior distribution, the Metropolis Hastings ratio, Equation (4.21),
changes to

α(xt, y) = min {1, exp [(log f(y) + log q(xt|y)) − (log f(xt) + log q(y|xt))]} . (4.22)
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The initial distribution will often not be part of the stationary target distribution. In
order to make inferences about the target distribution, the first part of the Markov chain
has to be discarded since it is not part of the equilibrium distribution. Discarding the
portion of the chain that is not part of the stationary target distribution is called burn in.
Determination of the burn in size is usually done by expert knowledge or by examining
the current results of the Markov chain. A straightforward approach is to plot the curves
of the variables in the chain and determine the stage where the samples are part of a
stationary distribution.
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Chapter 5

Model of the Wing Geometry

Uncertainty quantification deals with propagating input uncertainty distributions through
a simulator to obtain output uncertainty characteristics. Prior to the uncertainty quan-
tification the input uncertainty distributions need to be defined. Many input variables
are present in the experiment. The wing geometry is believed to be one of the major
influential uncertain inputs.

Due to inaccurate manufacturing practices the wing geometry deviates from the design
profile DU96W180. The feeling is that the geometric variations introduce discrepancies
between experimental observations and simulations of the DU96W180 profile. In order
to increase understanding about the influence of geometric deviations from the design
geometry, measurements of the wing are performed and a three-dimensional model is
obtained.

Initially geometric measurements are performed by a Coordinate Measuring Machine
(CMM) as discussed in section 5.1. Due to improper use of the measuring equipment large
uncertainties are introduced in these measurements. In order to improve on the CMM
results, additional measurements are performed using a photogrammetry technique, see
section 5.2. Section 5.3 describes that by combining information from both data sources
using cokriging, accurate knowledge is obtained about the geometry of the wing.

5.1 CMM Geometry Measurements

Geometric measurements are initially performed using a Coordinate Measuring Machine
to obtain seven two-dimensional profiles at various spanwise locations. Section 5.1.1 dis-
cusses the measurement procedure followed. Considerable work has been done to the raw
measurements to obtain useful geometric data. Section 5.1.2 describes the transformation
that is applied to the data and section 5.1.3 discusses the errors present in the CMM data.

45
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5.1.1 Measurement Procedure

Geometrical measurements are performed using a Coordinate Measuring Machine of type
Mitutoyo BH706, see Figure 5.1. The wing is laid down on a granite measuring table and
clamped in order to prevent movement. A downward pointing probe scans the airfoil with
a ball at the end that touches the surface. The diameter of the touching ball is 10.961
mm. The probe is attached to an arm that can move both horizontally and vertically.
The arm is moved along the airfoil surface by manual action. The measurement unit on
itself provides a resolution of 0.005 mm and an accuracy of 0.01 mm. However, the most
important errors are caused by movement of the wing and flap and by the fact that the
pressure and suction side of the wing are measured separately. These errors are in the
order of a millimeter.

5.1.2 Transformation of the CMM Measurements

Figure 5.1: Coordinate Measuring Ma-
chine Mitutoyo BH706.

At seven spanwise locations a profile is
measured in the chordwise direction. For
each measurement point the location of
the center of the ball is recorded. Usually
CAD software corrects the data for the ball
radius. However, due to improper func-
tioning of the CMM software the measure-
ments are not corrected for the ball radius.
Therefore the ball radius correction is per-
formed within Matlab by translating the
coordinate data over a distance equal to
the ball radius in the direction normal to
the surface. For each coordinate point the
angle is computed using consecutive data
points in the chordwise direction. Due to
the fact that the data resolution is higher
than the accuracy, the data is noisy. In or-
der to obtain a smoothly varying angle the
data are smoothed prior to calculating the
correction angle. Except for coordinates
near the airfoil leading edge and trailing
edge the ball radius corrections yield a pro-
file that corresponds to the DU96W180
profile. Because of the fact that the an-
gle varies a lot near the leading and trail-
ing edge, the smoothing introduces errors

in these regions.

The separately obtained measurements of the suction and pressure side lack a common
reference. The profiles of the suction and pressure side need to be combined to obtain full
two-dimensional profiles. Assuming that the thickness of the measured profiles is equal to
the thickness of the DU96W180 profile, the suction and pressure sides are combined. The
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Figure 5.2: Comparison of the geometrical measurement of the Coordinate Measuring Ma-
chine with the DU96W180 profile. The raw data and the corrected data are
shown separately.

measurement data are scaled, translated and rotated such that the measured profiles lie as
good as possible on top of the DU96W180 profile. The scaling is performed by using the
ratio of chord lines of the measurements and the DU96W180 profile. Careful inspection
of the measurement data has shown that the chord line of the measurements amounts to
505 mm. The translation distance and rotation angle are computed by using numerical
minimization of the total distance between the measurements and the DU96W180 profile.
Translations and rotations are applied to the profiles of the suction and pressure side
separately. The results of the ball radius correction, the scaling, translation and rotation
are shown in Figure 5.2 together with the DU96W180 profile. The discrepancy between
the measurements and the DU96W180 profile are largest in the leading edge and trailing
edge region.

5.1.3 Measurement Errors

As stated above, uncertainties are introduced in the measurements by possible movement
of the wing and the flap. The most important error however is introduced by the fact that
the suction and pressure sides of the wing are measured separately. The assumption of
equal thickness between measured profiles and DU96W180 profile introduces considerable
uncertainty in the geometrical data. Furthermore, the accuracy at the leading and trailing
edge is limited because it is difficult to attach the probe to and from the surface. Based on
careful inspection of the results, the uncertainty of the CMM measurements is estimated
as 0.25 mm.
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5.2 Photogrammetry Measurements

Since the CMM measurements are subject to large errors additional measurements are
performed using a technique called photogrammetry. The measurement procedure is
explained in section 5.2.1 and the measurement errors are discussed in section 5.2.2. The
photogrammetry results are mapped in such a way that they are easily comparable with
the coordinates of the DU96W180 profile, see section 5.2.3.

5.2.1 Measurement Procedure

Photogrammetry makes use of two-dimensional pictures to reconstruct the three-dimensional
geometry of an object. The camera used during the measurements is a Nicon D90 and the
software used for the analysis is Photomodeler Scanner v6.2. Prior to taking the pictures,
the wing is marked with many yellow markers that can easily be recognized on pictures,
see Figure 5.3. In order to be able to identify common markers between pictures taken
from the pressure and suction side, marker lines are put in front of the leading edge and
behind the trailing edge. These additional marker lines enable to relate coordinates from
the pressure side accurately to coordinates from the suction side. In total 44 pictures
were required to be able to reconstruct the geometry by this technique.

Figure 5.3: Wing object marked with stickers for photogrammetry.

The procedure to perform photogrammetry can be broken down into four steps. The
first step of the technique consists of the determination of the internal orientation of the
camera through calibration. The internal orientation is described by parameters such
as the focal length and lens distortion coefficients. During the second step the external
orientation is determined by manually pointing 6 identical points on different pictures.
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The identical points need to be common to at least two different pictures. This results in
the position and rotation of the camera for every picture with respect to the object. The
relationship between coordinates in the pictures and object coordinates is obtained from
the internal and external orientation by making use of collinearity equations. The third
step is called feature detection and consists of automatic detection of the markers. The last
step comprises matching of corresponding markers to each other. This process is called
feature matching. The features that are matched are finally assembled to reconstruct the
three-dimensional object.

5.2.2 Measurement Errors

The main uncertainty of the measurements originates from inaccuracy in the determi-
nation of the internal and external orientation. This uncertainty becomes clear in the
feature detection and matching process, i.e. relating the various marker points in pictures
to each other and constructing three-dimensional coordinates. The process of identify-
ing the midpoints of the markers is believed to be relatively accurate. Additional to the
three-dimensional coordinates the program outputs the largest residual and the root mean
square of the residual for each coordinate point. The marking residual is the difference
between the projection of the calculated three-dimensional coordinate of a point on a
picture and the actual position of the point in the picture. The measurement uncertainty
is calculated as the sum of the average largest residual and the average root mean square
of the residual of all points. After conversion from pixels to millimeters the uncertainty
amounts to 0.17 mm.

5.2.3 Mapping of the Photogrammetry Results

The result of the photogrammetry measurements is a cloud of coordinates in three-
dimensional space. In order to compare it with the DU96W180 profile, the data need
to be scaled, translated and rotated. Because the wing is a structured object, principal
component analysis (PCA) is employed to determine the principal axes of the object. PCA
refers to a mathematical procedure that uses an orthogonal transformation to convert a
set of observations of possibly correlated variables into a set of values of uncorrelated
variables called principal components. The principles of the PCA procedure have initially
been developed by Pearson [1901]. The wing is rotated using the coefficients of the prin-
cipal component analysis and manual fine tuning afterwards. The translation towards
the two-dimensional DU96W180 airfoil and a small rotation around the spanwise axis
is performed using numerical minimization of the distance between coordinates of the
DU96W180 airfoil and coordinates of the measured airfoil in two dimensions. During this
minimization the flap region is excluded to obtain a proper fit of the pressure and suction
side of the wing to the coordinates of the DU96W180 airfoil in this region. The result
is shown in Figure 5.4 together with the DU96W180 airfoil. Note that especially in the
flap region the measurements show that there is an offset in flap angle. Furthermore the
profile is thicker in the flap region than the DU96W180 profile. This effect is also visible
in the CMM measurement shown in Figure 5.2. Since only mapping is applied to the
photogrammetry results, no additional error is introduced by the mapping step.
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Figure 5.4: Comparison of the photogrammetry measurements with the DU96W180 profile
in two dimensions.

5.3 Wing model

The CMM and photogrammetry measurements of the geometry are combined to obtain
an accurate geometric model of the wing using cokriging, see section 4.3.2. The CMM
measurements act as a low fidelity data source and the photogrammetry measurements
as a high fidelity data source. The uncertainty of each data set is taken into account. The
measurement data from both measurements are combined and shown in Figure 5.5.

5.3.1 Kriging profiles

Applying cokriging to the data in Cartesian coordinates would yield two problems. One
problem is that cokriging has difficulty with handling large gradients, which are present
at the leading edge. Another problem is that for each coordinate along the chord line
there is a point on the upper and on the lower surface of the airfoil. This means that cok-
riging should be done on the upper and lower surface separately. Therefore, a coordinate
transformation is employed to circumvent these problems. The coordinate transforma-
tion consists of scaling and transformation to polar coordinates. Scaling is performed by
multiplying the coordinate running in the airfoil thickness direction with a factor of 6
such that the airfoil shape approximates a circle. This shape is transformed into polar
coordinates yielding a three-dimensional surface with the angle θ, radius r and spanwise
z coordinates. This surface is suitable for cokriging since there are no high gradients
present and for each θ and z coordinate point there is only one unique r coordinate on
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Figure 5.5: CMM measurement data (blue dots) and photogrammetry measurement data
(red dots) of the three-dimensional wing geometry.

the surface.

Cokriging is applied to the surface in polar coordinates employing the DU96W180 profile
as the mean function h(x) in equations (4.3) and (4.8) of section 4.3.2. In order to be
able to compare easily with the design geometry, the three-dimensional wing geometry is
modeled as 35 two-dimensional profiles in the spanwise or z-coordinate direction with z
coordinates zi = −1.7,−1.6, . . . , 1.7, see Figure 5.6. The θ coordinates for these profiles
are obtained from the DU96W180 profile. For each two-dimensional profile an uncer-
tainty covariance matrix is available that represents the uncertainty resulting from the
cokriging prediction. Each of these profiles can be used as an input for XFOIL to perform
aerodynamic computations.

5.3.2 Mean 2D Profile Distribution

In order to compare the measured wing geometry well with the DU96W180 profile the
three-dimensional wing needs to be transformed into a two-dimensional airfoil distribu-
tion. A straightforward and simple approach is to use Monte Carlo approximation. At 35
locations, which are distributed along the wingspan, a sufficiently large amount of sam-
ples is generated from the cokriging Gaussian model to represent the airfoil distribution.
The amount of samples is determined by investigating the error between the mean and
variance of the airfoil distribution and the sample mean and variance of the generated
profiles. Taking into account computational limits the amount of samples is determined
as 2500.
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Figure 5.6: Airfoil profiles resulting from cokriging of the CMM and photogrammetry data.

At the 35 spanwise locations 2500 random airfoil samples are generated and the sample
mean and covariance matrix are obtained from the collection of 35×2500 samples in total.
In this way an average airfoil profile is obtained and a covariance matrix that represents
both the cokriging uncertainty at the 35 spanwise locations and the geometric variation
along the wing span.

A comparison of the DU96W180 profile and the mean 2D profile is shown in Figure 5.7.
The leading edge region and the flap region clearly show discrepancies between the two
profiles. Figure 5.8 shows the mean 2D profile including the total geometric uncertainty.
The geometric uncertainty is computed by taking the square root of the diagonal of the
covariance matrix. At the suction side the geometric uncertainty is relatively large in the
middle and flap region. At the pressure side the geometric uncertainty is largest in the
middle region. The fact that the uncertainty is large in these regions is mainly due to
spanwise variations, which are now included in the geometric variance. The maximum
distance between coordinates of the DU96W180 profile and the mean 2D profile amounts
to 4.6 mm and is found in the flap region on the pressure side. Furthermore the largest
geometric uncertainty amounts to 0.95 mm and is found in the middle of the pressure
side of the airfoil.

The transformation from the three-dimensional wing, which is described in 35 two-
dimensional profiles along the wing span, to a two-dimensional distribution might be
problematic. The lift coefficient of the three-dimensional wing might be different from
the lift coefficient of the two-dimensional mean profile. In order to assess this problem a
comparison is made between the cl −α curve of the mean profile and the cl −α curves of
the 35 profiles. Since the geometry has only an influence on the XFOIL outputs and not
directly on the corrections, no corrections are applied to these data. The sample mean
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Figure 5.7: Comparison of the mean 2D profile and the DU96W180 profile.
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Figure 5.8: The mean two-dimensional profile shown together with its geometrical uncer-
tainty. The uncertainty interval corresponds to the standard deviation multiplied
with a factor of 10.
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and variance are computed from the cl − α curves of the 35 airfoil profiles. Figure 5.9
shows that there is a reasonably good agreement between the two curves. This indicates
that it is reasonable to use the mean airfoil profile as a two-dimensional approximation
of the three-dimensional wing.
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Figure 5.9: Comparison between the uncorrected lift coefficients of the mean two-
dimensional airfoil profile and the three-dimensional wing. The blue line in-
dicates the cl −α curve of the mean profile. The red line indicates the mean of
the lift coefficients of the 35 profiles; the bars indicate the standard deviation.



Chapter 6

Uncertain Wing Geometry

The three-dimensional model of the wing geometry shows deviations from the design
airfoil DU96W180. The influence of the uncertain wing geometry is investigated in this
chapter. A breakdown of the actions applied to obtain uncertainty information about the
geometry is presented in a flow diagram in Figure 6.1.

CMM mea-
surements

photogrammetry
measurements

cokriging

wing model

least squares
approximation

FFD control point distribution

Figure 6.1: Flow diagram of the geometry measurements data analysis.

In order to be able to investigate the influence of the wing geometry on the aerodynamic
characteristics, it is necessary to parameterize the wing geometry. As discussed in sec-
tion 6.1, a free-form deformation (FFD) tool is employed to provide a parameterization
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with a limited number of parameters. Transformation of the geometric deviations into
a probability distribution on the control points, i.e. the FFD parameters, is performed
using a least squares approach, as described in section 6.2. Using the probability dis-
tribution on the control points, the sensitivity of the lift coefficient with respect to each
control point is computed, see section 6.3.

6.1 Free-Form Deformation

For uncertainty quantification purposes the amount of variables needs to be reduced
considerably. The number of variables of the cokriging model of the wing amounts to 35×
201 = 7035 coordinate points. The amount of variables is greatly reduced by employing a
free-from deformation tool, according to Duvigneau [2006] and Sederberg & Parry [1986].
The FFD technique employs a parameterization of the wing and uses thereby considerably
less variables.

6.1.1 Deformation Principles

The FFD technique allows the deformation of an object in 2D or 3D space, regardless
of its geometrical description. In this research the FFD is applied to a two-dimensional
profile for simulation and uncertainty analysis purposes. A quadrilateral lattice is built
around the object to be deformed. The FFD action can be represented by the movement
of control points, which are located on the sides of the lattice. By moving the control
points, the object inside the lattice is deformed. A local coordinate system (ξ, η) is defined
in the lattice with (ξ, η) ∈ [0, 1] × [0, 1]. The deformation step consists of computing the
displacement ∆q of each point q inside the lattice as defined by the second-order Bézier
tensor product

∆q =

ni∑

i=0

nj∑

j=0

Bni
i (ξq)B

nj

j (ηq) ∆Pij, (6.1)

where Bni
i and B

nj

j are the Bernstein polynomials of order ni,j defined by

Bn
p (t) = Cp

ntp (1 − t)n−p .

The (ξq, ηq) coordinates in Equation (6.1) are the FFD coordinates of the point q, which
result from describing the object in lattice coordinates. The weighting coefficients ∆Pij ,
i.e. the control points displacements, are the driving variables that induce the deforma-
tion. The weighting coefficients can be arranged in a vector as

∆P T = [∆Pij]i=1,...,ni;j=1,...,nj
∈ ℜ(ni+1)×(nj+1)

=
[
∆P00,∆P01, . . . ,∆Pninj

]
.

The Bernstein polynomial terms are arranged in a matrix B where each row Bq, corre-
sponding to a coordinate point q, is given by

Bq =
[
Bni

i (ξq) B
nj

j (ηq)
]

i=1,...,ni;j=1,...,nj

∈ ℜ(ni+1)×(nj+1)

=
[
Bni

0 (ξq) B
nj

0 (ηq) , Bni
0 (ξq) B

nj

1 (ηq) , . . . , Bni
ni

(ξq) B
nj
nj (ηq)

]
.
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Now the second-order Bézier tensor product, Equation (6.1), can be expressed as a simple
matrix product to replace the double summation as

∆q = B∆P. (6.2)

The B matrix only depends on the original geometry of the object and the number of
control points. A graphical representation of the two-dimensional FFD applied to the
profile is shown in Figure 6.2.
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Figure 6.2: Free-form deformation of airfoil DU96W180.

6.1.2 Determination of the Optimal FFD Control Points

The optimal amount of FFD control points is a compromise between accuracy and compu-
tational feasibility. The more control points the FFD has, the better it can represent the
measured airfoil. However, the amount of control points is limited since the computation
time of the uncertainty analysis using probabilistic collocation increases exponentially
with the amount of variables. The ability of the FFD to represent the mean 2D profile,
as described in section 5.3, is evaluated using a least squares approximation. The least
squares approximation of the weighting coefficients vector ∆P |lsq on the control points
for a given geometry ∆q is given by

∆P |lsq =
(
BTB

)−1
BT∆q.

The sum of the least squares residuals is used as an indication of the ability of the FFD
to represent a certain geometry. The sum of squared residuals Σres is computed as

Σres =
∑(

∆q − B
(
BTB

)−1
BT∆q

)2
.



58 Uncertain Wing Geometry

Σres is computed for a range of increasing number of control points and shown in Fig-
ure 6.3. Initially the residual decreases rapidly but the decrease levels off after 10 control
points. Presenting the residual curve on a logarithmic scale in Figure 6.3b shows that the
residual goes to zero asymptotically with a decrease of roughly order 1. In the special case
that the amount of FFD control points is equal to the amount of coordinates of the profile
the least squares approach can be replaced by a matrix inversion and the residual will
be zero. Furthermore, taking into account the computation time required for uncertainty
analysis, 10 FFD control points are chosen.

The required time to obtain a first order probabilistic collocation approximation of XFOIL
simulations for the uncertainty analysis would be

TPC = (P + 1)NCP · Nd · TXFOIL = (1 + 1)10 · 15 · 1.7 = 7.3h,

where P is the PC approximation order and NCP is the number of FFD control points. Nd

is the amount of design data points at which the uncertainty is computed, see section 2.2.1,
and TXFOIL is the XFOIL evaluation time for Npanels = 350 according to Table 3.2.
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Figure 6.3: The sum of squared residuals expresses the ability of the FFD tool to represent
a given geometry given a certain amount of FFD control points.

6.2 FFD Control Weight Distribution

The transformation from a three-dimensional airfoil distribution to a distribution on the
FFD control points can be performed in various ways. Although the FFD actually com-
prises a linear matrix equation it is impossible to use a change of variable approach because
the FFD computation, and especially the B matrix in Equation (6.2), is not invertible.
Therefore, a least squares approach is applied to solve the overdetermined problem and
obtain a distribution of the FFD control weights that represents the uncertain wing ge-
ometry.
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6.2.1 Classification of Profiles

In order to improve understanding of the analysis, clarity in the terminology is enhanced
by listing the various profiles that occur in this thesis.

DU96W180 profile The wing is manufactured according to the design airfoil of type
DU96W180. This design profile is termed DU96W180 profile.

Kriging profiles Using cokriging the CMM and Photogrammetry measurements are
combined and a three-dimensional wing model is obtained. The three-dimensional
wing model is described in 35 two-dimensional profiles along the span of the wing,
see section 5.3.1. The 35 two-dimensional profiles obtained with cokriging are called
the kriging profiles.

MC profiles collection From each of the 35 kriging profiles 2500 airfoil samples are
generated by a random generator. The collection of the 2500 samples of all the 35
kriging profiles is called the MC profiles collection.

Mean 2D profile distribution The sample mean and covariance are computed for the
MC profiles collection of 87500 samples. The resulting profile distribution is termed
the mean 2D profile distribution, see section 5.3.2.

LS profile distribution Using a least squares approach the FFD control weights are
computed corresponding to each sample in the MC profiles collection. This yields
87500 FFD control weights samples. Using the FFD for each FFD control weights
sample a corresponding profile can be computed yielding 87500 least squares profiles.
Taking the sample mean and covariance of all the 87500 least squares profiles results
in the least squares profile distribution, or in short LS profile distribution.

6.2.2 Least Squares Approach

The free-form deformation tool consists of two steps. The first step comprises computation
of the Bézier polynomials that depend only on the original geometry. The second step,
i.e. the deformation step, consists of computing a linear matrix product. During this
step the Bézier polynomials do not change. The deformation step can be inverted to
find the optimal FFD control weights according to a certain profile by employing a least
squares approach. A similar approach is employed here as in the computation of the mean
2D profile distribution, see section 5.3.2, to transform the three-dimensional wing into a
two-dimensional distribution.

The least squares approximation of the FFD control weights ∆P |lsq to a given profile ∆q
is given by

∆P |lsq =
(
BTB

)−1
BT∆q, (6.3)

where B is the FFD matrix as described in section 6.1. The uncertainty of the wing is
propagated to the FFD control points using a Monte Carlo approach. For each of the
samples of the MC profiles collection, the least squares approximation of the FFD control
weights is obtained using Equation (6.3). A multivariate normal distribution is assumed
for the FFD control weights. Taking the sample mean and covariance of all the 87500 FFD
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weighting coefficient vectors yields the FFD control weights distribution characteristics.
The FFD control weights distribution includes the cokriging uncertainty of each of the
kriging profiles as well as the geometrical variation of the wing along the span. The 87500
FFD weighting coefficient vectors are used to compute 87500 corresponding profiles by
employing the FFD tool. The sample mean and covariance of these profiles yield the least
squares (LS) profile distribution.

6.2.3 Least Squares Approximation Results

The least squares approach has provided the sample mean and covariance of the FFD
control points representing the geometric uncertainty. Figure 6.4 shows the mean and
standard deviations of the control point distribution. The numbering of the control points
corresponds to the numbering given in Figure 6.2. The standard deviations are obtained
from the covariance matrix by taking the square root of the diagonal elements. The
largest standard deviations are found in the middle of the pressure surface (CP3) and at
the trailing edge of the suction surface (CP10).
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Figure 6.4: Mean and standard deviations of the FFD control points distribution.

The control points distribution results are investigated by comparing the LS profile distri-
bution with the mean 2D profile distribution. The mean profiles of both distributions are
shown in Figure 6.5. Differences between the profiles are hardly visible since the mean 2D
profile lies mainly on top of the LS profile. The maximum difference between the profiles
in the y direction, i.e. perpendicular to the chordwise direction, amounts to 0.48 mm and
occurs at the suction side where the flap is attached to the wing. This difference is mainly
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caused by the fact that the FFD cannot represent very sudden variations in the geometry.
The mean difference in the y direction between the profiles amounts to 0.06 mm.
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Figure 6.5: Airfoil profiles corresponding to the mean of the least squares profiles distribution
and the mean 2D profile.

A comparison of the geometric standard deviations of the mean 2D profile distribution
and the LS profile distribution is shown in Figure 6.6. Although the standard deviation
is overall slightly underestimated, the curve shapes show reasonable resemblance. Also
from these graphs it is clear that the FFD cannot represent small variations. The mean
and maximum difference between both profiles in the y-direction are 0.05 mm and 0.5
mm respectively. Increasing the amount of FFD control points can solve this issue.

It can be concluded that the mean of the control point distribution shows that geometric
deviations from the design geometry are small near the leading edge and large in the
middle chord region and near the trailing edge. The standard deviations of the control
point distribution indicate that geometric variations along the wing span are large in the
middle chord region and near the trailing edge.

6.3 Sensitivity Analysis

The sensitivity of the lift coefficient to the FFD control points is investigated using a
probabilistic collocation based sensitivity analysis, according to section 4.4.4. The XFOIL
panel code is employed to perform the required deterministic simulations. The XFOIL
input settings are according to Table 3.3. The simulation results are corrected for three-
dimensional effects and wind tunnel effects according to section 3.3.
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Figure 6.6: Comparison of the standard deviation of the mean 2D profile distribution and
the LS profile distribution.

A PC sensitivity analysis is performed using three collocation points for the computa-
tion of the derivatives. The sensitivity derivative of the lift coefficient with respect to
parameter a is given by cla = ∂cl

∂a . The sensitivity information can be combined with the
standard deviation by defining the scaled sensitivity derivative as

ĉla =

(
σa

∂cl

∂a

)
,

where σa is the standard deviation of parameter a. The scaled sensitivity provides infor-
mation about the relative influence of a parameter on the output for parameter comparison
purposes.

The sensitivity derivatives of the lift coefficient with respect to the FFD control points
are shown in Figure 6.7. The numbering of the control points corresponds to the numbers
shown in Figure 6.2. The lift coefficient is most sensitive to geometrical variations near
the trailing edge. The scaled sensitivity derivatives are used to determine the relative
importance of the FFD coordinates. It is clear that due to the small standard deviation
and sensitivity derivatives of the control points at the leading edge the scaled sensitivity
derivatives are small. It might be necessary to exclude uncertain variables in the un-
certainty analysis due to computational reasons. In that case the first parameters to be
discarded are the control points near the leading edge since they are least influential.

The scaled sensitivity derivatives of the moment coefficient indicate as well that the control
points in the flap region are most influential, see Figure 6.8. Control points number 2
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and 7 are least influential since they are located closest to the aerodynamic center, which
is the location at which the moment is applied.

In conclusion it can be said that the largest geometric variations occur in the most influ-
ential part of the geometry, i.e. the flap region, according to the sensitivity derivatives.
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Figure 6.7: Sensitivity derivatives of the lift coefficient with respect to the FFD control
points.
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Figure 6.8: Scaled sensitivity derivatives of the moment coefficient with respect to the FFD
control points.
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Chapter 7

Uncertain Experimental Parameters

The uncertain wing geometry includes only part of the uncertain inputs. Various other
input uncertainties are present in the experiment for which uncertainty distributions need
to be defined. A distinction is already made between geometric uncertainties and exper-
imental input uncertainties. The experimental input uncertainties will be investigated
in this chapter to obtain uncertainty distributions of all major input parameters for the
uncertainty analysis.

The experimental input uncertainties are classified and quantified in section 7.1, yielding
uncertainty distributions for the inputs. Given the distributions of the uncertain input
parameters, a sensitivity analysis is performed, see section 7.2.

7.1 Determination of Input Uncertainties

Many variables are present in the experiment as performed according to chapter 2. One
can distinguish between variables related to the tunnel conditions, which are termed tun-
nel variables, and variables related to the specific measurement setup, which are termed
experimental setup variables. Tunnel variables are for example the free stream velocity,
the pressure or the density. Examples of the experimental setup variables are the angle
of attack, the flap angle, the wing position in the open jet stream and the width of the
gap between the wing and the side walls.

Based on experience and employing qualitative reasoning a choice is made of the most im-
portant variables. Since there is a quadratic relationship between the aerodynamic forces
and the velocity, the free stream velocity V is chosen as the most important tunnel vari-
able. In many aerodynamic experiments the aerodynamic characteristics are determined
as a function of angle of attack and flap angle since these variables are very influential.
Therefore, from the experimental setup parameters the angle of attack α and flap angle δ
are chosen for the uncertainty analysis. The presence of a gap between the wing and the
side walls introduces wing tip vortices. Since the wing tip vortices are regarded as the
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most important three-dimensional effects the gap width ∆g is included for the uncertainty
analysis as well.

The results of sensitivity and uncertainty analyses are of course highly dependent on the
input uncertainties. Therefore the input uncertainties need to be determined carefully.
Preferably the uncertainties are computed based on available data. In case of lack of data
an educated guess is made.

Independent normal distributions are assumed for the input variables angle of attack α,
flap angle δ, free stream velocity V and gap width ∆g. In case various uncertainties are
related to one input variable the errors can be combined. Let X and Y be two independent
random variables that are normally distributed as

X ∼ N
(
µX , σ2

X

)
,

Y ∼ N
(
µY , σ2

Y

)
.

In that case the sum of both variables is distributed as

X + Y ∼ N
(
µX + µY , σ2

X + σ2
Y

)
.

In case only the maximum error is known a conservative approach is employed in that
the maximum error is regarded as the standard deviation of a normal distribution.

7.1.1 Angle of Attack

For the determination of the uncertainty in angle of attack, only geometric effects are
taken into account. The uncertainty in the angle of attack with respect to the streamlines
(i.e. the effective angle of attack) is accounted for by wind tunnel corrections. These
corrections take into account the deflection of streamlines due to the open jet exit. The
geometric uncertainty can be broken down into two contributions, one caused by platform
instability and the other caused by mold inaccuracy. It is assumed that there is a constant
systematic error present, which is invariant of the angle of attack. This systematic error
introduces a discrepancy in the angles of attack. The angle of attack discrepancy is
denoted by the random variable ∆α.

The contribution that is related to platform instability is determined during the exper-
iment. The platform or measurement table on which the structure and the wing are
positioned moves slightly when forces are applied. The uncertainty in the inclination of
the platform is determined by measuring the inclination angle before, during and after
an experimental run. Readings are collected during multiple experimental runs and the
uncertainty is determined as 0.07 degrees. The angle measurements are performed us-
ing a Clinotronic PLUS measurement device with a measurement error of less than 0.03
degrees. Using a conservative approach these maximum errors are treated as standard
deviations of normal distributions. The total uncertainty in angle of attack caused by
platform instability amounts to

√
0.072 + 0.032 = 0.076 degrees.

The uncertainty related to mold inaccuracy is difficult to determine. The wooden mold
is manufactured based on CMM measurements of the wing profile. The mold fits the
wing nicely in the middle chord region, i.e. 0.1c < x < 0.8c, where c is the chord
length and x is the chordwise coordinate. However, near the leading edge and in the flap
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region the mold does not fit the wing profile very well. Based on these considerations an
uncertainty of 0.25 degrees is estimated. During the experiment the wing angle of attack
is set by measuring the angle of the mold using the Clinotronic PLUS measurement device
described above. The sum of the mold inaccuracy and the measurement error amounts
to a total uncertainty of

√
0.252 + 0.032 = 0.252 degrees related to the mold.

Adding up the two contributions of uncertainty yields a total uncertainty in the angle of
attack of

σα =
√

0.0762 + 0.2522 = 0.263◦.

7.1.2 Flap Deflection Angle

The flap deflection angle is defined as the angle between the airfoil chord and the flap
chord. Three uncertainty contributions can be distinguished in the flap angle uncertainty.
Statistical as well as systematic errors contribute to the total flap angle uncertainty. Since
the systematic error is assumed to be invariant of the flap angle it introduces a constant
discrepancy in the angle of attack. The flap angle discrepancy is denoted by the random
variable ∆δ.

The most important uncertainty contribution originates from the fact that the mold is
rather inaccurate in the flap region. Using the photogrammetry measurements, as de-
scribed in section 5.2, the flap angle offset for the airfoil clamped in the mold is determined.
Using numerical optimization the total sum of the distance between the coordinates of the
2D design profile and the photogrammetry measurements in 2D is minimized by varying
the position of the measured wing. Performing this optimization for the region of the
wing in front of the flap yields that the chord lines of the design profile and the measured
profile lie approximately on top of each other. Including now a deflecting flap in the de-
sign profile, the optimum flap angle is computed again by using numerical minimization
of the sum of distances between measurements and design profile in the flap region. The
resulting flap deflection angle is found to be 0.58 degrees.

The flap is kept in position by two servo engines that are attached to the wing and move
the flap via levers. The flap deflection angle is controlled by applying a voltage to the
servo engines. The amount of voltage required for a desired angle is determined via a
calibration. The calibration is performed by measuring the flap angle by the Clinotronic
PLUS angle measurement device and the voltage on the servo engines. The uncertainty
related to the calibration originates therefore mainly from the measurement error and
amounts to 0.03 degrees.

The third contribution of uncertainty in flap deflection angle is caused by the actuation
system. There is no uncertainty present that stems from the influence of the flap weight
and lift force on the servo engines, since the servo engines are strong enough to counteract
these forces. However, the mechanical free play in the actuation system, which is mainly
caused by the connection of the lever to the engines and the flap, introduces flap angle
uncertainty. The free play introduces uncertainty because of the changing forces on the
flap. This uncertainty contribution is determined by comparing the set input flap angle
with the flap angle that is measured during experimental runs. It amounts to an uncer-
tainty of 0.07 degrees. This time the flap angle is measured using a built-in device that
is calibrated simultaneously with the calibration of the servo engines. The error of the
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measurement device is less than two digits and shows therefore not up in the uncertainty
angle of this contribution.

The total uncertainty in the flap angle is caused by mold inaccuracy, calibration error and
mechanical free play. The sum of these contributions amounts to a total flap deflection
angle uncertainty of

σδ =
√

0.582 + 0.032 + 0.072 = 0.585◦.

This is the value for the parametric variability of the flap deflection angle used as an input
for uncertainty analysis.

7.1.3 Free Stream Velocity

During the experiment the free stream velocity in the test section is controlled by the
RPM of the fan that accelerates the air in the wind tunnel. Small fluctuations in the
velocity are measured by a pitot tube located at the tunnel exit. The inaccuracy of the
pitot tube in m/s amounts to less than two digits. Measurements of the wind speed are
recorded for each experimental run. Analyzing the recorded wind speed measurements
shows that the wind speed has a standard deviation of 0.05 m/s, see Table 2.1.

7.1.4 Gap Width
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Figure 7.1: Influence of the gap size ∆g
on the lift coefficient, nor-
malized with the CL at zero
gap size for various angle of
attack.

The wing is suspended to a structure be-
tween two side walls that diminish 3D flow
effects. In between the wing and the side
walls a small gap of approximately 4 mm is
present. Although the fact that the struc-
ture and the connection of the wing to the
structure is rigid, the exact gap width is
not exactly measured during the experi-
ment. Furthermore, based on the irregu-
larity of the wing sides the gap size uncer-
tainty is estimated at 1 mm.

The presence of a gap introduces three-
dimensional effects in the flow. Vortices
are formed around the wing tips. The re-
duction in lift coefficient for increasing gap
size is presented in Figure 7.1 for various
angles of attack. The curves are based
on Tornado computations for varying gap
width and angle of attack. For increasing
gap width the lift coefficient decreases due
to the formation of wing tip vortices. The

most severe decrease in lift coefficient occurs for increasing the gap width from 0 to 10
mm. For large gap widths the lift coefficient will approach a constant value since the gap
width is large enough for the full development of the wing tip vortices. Furthermore, for
increasing angle of attack the influence of the gap size on the lift coefficient increases.
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The probability distributions of the uncertain input variables are fully determined by
the mean and standard deviation. A summary of the characteristics of the normal dis-
tributions of the uncertain experimental input parameters is given in Table 7.1. These
uncertainty distributions are the inputs for the uncertainty analysis to obtain output
uncertainty distributions.

Contributions Total Mean

Angle of attack ∆α 0.263◦ 0◦

Mold 0.252◦

Platform 0.076◦

Flap angle ∆δ 0.585◦ 0◦

Mold 0.58◦

Calibration 0.03◦

Mechanical free play 0.07◦

Wind speed V 0.05 m/s 21 m/s

Gap width ∆g 1 mm 4 mm

Table 7.1: Breakdown of the estimated standard deviations of the uncertain experimental
inputs.

7.2 Sensitivity Analysis

Using the probabilistic collocation method the uncertainty distributions on the angle of
attack, flap angle, wind speed and gap size are propagated. A deterministic code is used
to obtain solutions at the collocation points of the PC approximation.

7.2.1 Deterministic Code

The numerical code employed to obtain the aerodynamic characteristics is the Tornado
vortex lattice method code, see section 3.2. The choice for this code is based on time
limitations and on the fact that three-dimensional effects need to be included for the gap
width. From Table 3.4 the finest grid, i.e. grid number 5, is chosen for the sensitivity
analysis because a very fine grid is required to perform accurate computations for very
small variations in gap width.

In order to be able to compare with the experimental results, a normalization is employed
that is slightly different from the regularly used normalization. The lift, drag and moment
coefficients are obtained from normalizing the aerodynamic quantities with a fixed wind
speed of 21 m/s. The lift coefficient is computed as

CL =
L

1
2ρV 2S

,

=
L

1
2 · 1.225 · 212 · (1.8 · 0.5) ,

where ρ is the density, V is the wind speed and S is the wing area. The wind tunnel
corrections and chord length correction are applied to the coefficients according to sec-
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tion 3.3. This approach is similar to the way the aerodynamic coefficients are computed
during the experiment.

7.2.2 Sensitivity Derivatives

A sensitivity analysis is performed according to the method described in section 4.4.4,
using three collocation points to compute the derivative. The unscaled sensitivity deriva-

tive CLa = ∂CL
∂a as well as the scaled sensitivity derivative ĈLa =

(
σa

∂CL
∂a

)
is computed.

The computation is based on the uncertainty distributions of the input variables, mean-
ing that the derivative is computed at the location of the mean of the distributions. The
results are presented in Table 7.2.

σa CLa CMa ĈLa [-] ĈMa [-]

∆α 0.263◦ 0.094 /◦ -0.534·10−3 /◦ 0.0246 0.14·10−3

∆δ 0.585◦ 0.051 /◦ -11.2·10−3 /◦ 0.0297 6.58·10−3

V 0.05 m/s 0.026 /(m/s) -6.95·10−3 /(m/s) 0.0013 0.35·10−3

∆g 0.001 m -3.603 /m 0.465 /m 0.0036 0.47·10−3

Table 7.2: Sensitivity analysis results for the experimental parameters showing the standard
deviation σa of the input parameters, the unscaled sensitivity derivative CL,Ma

and the scaled sensitivity derivative ĈL,Ma
.

Investigation of the unscaled derivatives shows that the lift coefficient is roughly twice
as sensitive to variations in the angle of attack than to variations in the flap angle. The
sensitivity to variations in gap width is very large due to the fact that the decrease in
lift coefficient is large for a gap width ranging from 0 to 10 mm, see Figure 7.1. The
sensitivity of the lift coefficient to velocity variations is smallest from the four sensitivity
derivatives. The sensitivity results for the moment coefficient show different behavior.
The unscaled derivatives show that also the moment coefficient is very sensitive to the
gap width. Furthermore, the moment coefficient is sensitive to flap angle variations but
very insensitive to variations in angle of attack and free stream velocity.

Using Figure 7.2 a comparison of the scaled sensitivity derivatives is performed. The
lift coefficient sensitivity derivatives show that out of the four uncertain experimental
input parameters, the angle of attack and the flap angle are clearly the most influential
parameters. The influence of the angle of attack is almost similar to the influence of the
flap angle. The effect of the wind speed is almost negligible with respect to the influence
of ∆α and ∆δ. The sensitivity of the lift coefficient with respect to the gap size is also
small with respect to the angle of attack and flap angle, although its influence is larger
than the influence of the velocity. Note that the mean gap width is very influential for
the sensitivity derivative of the gap width, as can be seen from Figure 7.1. The scaled
sensitivity derivatives of the moment coefficient show the same behavior, except for the
angle of attack discrepancy, see Figure 7.2b. It is clear that the moment coefficient is
extremely insensitive to variations in angle of attack.
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Figure 7.2: Sensitivity of the lift and moment coefficient to angle of attack discrepancy ∆α,
flap angle discrepancy ∆δ, wind speed V and gap size ∆g.
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Chapter 8

Uncertainty Analysis

Having obtained the uncertainty distributions of the input parameters, the output un-
certainties can be estimated using uncertainty analysis. Uncertainty analysis deals with
propagating input distributions through a model to obtain uncertainty distributions on
the outputs. The output uncertainties provide observation fidelity information for the
validation of computer codes.

In order to reduce the amount of variables included in the uncertainty analysis, the
sensitivity derivatives of the geometric and experimental input parameters are compared
and the most influential parameters are selected, see section 8.1. In the uncertainty
analysis XFOIL and Tornado computations are combined to obtain the aerodynamic
outputs. The rather complicated integration of both codes and the uncertainty analysis
approach are described in section 8.2. The resulting output uncertainties are presented
and discussed in section 8.3.

8.1 Determination of Important Parameters

The results of the sensitivity analyses of the geometric parameters and experimental pa-
rameters, which are presented in sections 6.3 and 7.2 respectively, indicate that some
uncertain input parameters have a relatively small influence on the lift coefficient com-
pared to other parameters. The most important parameters can easily be determined
by comparing the scaled sensitivity derivatives of all uncertain parameters. The scaled
sensitivity derivatives of all parameters are shown together in Figure 8.1. The least im-
portant parameters are determined as the velocity V from the experimental parameters
and the FFD coordinates CP1, CP2, CP6 and CP7 from the geometric parameters. The
remaining uncertain parameters that will be used for the uncertainty analysis are the
angle of attack discrepancy ∆α, the flap angle discrepancy ∆δ, gap width ∆g and the
FFD control points CP3, CP4, CP5, CP8, CP9, and CP10.

The moment coefficient sensitivity derivatives show roughly the same behavior for the
experimental inputs as well as the geometric inputs except for the angle of attack, see

73
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sections 6.3 and 7.2.2. However, since the influence of the angle of attack on the lift
coefficient is clear the angle of attack is regarded as an important variable.

Ĉ
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Figure 8.1: Scaled sensitivity derivatives of the uncertain experimental parameters and the
uncertain geometric control points.

For the determination of the uncertainty in the flap angle the geometric uncertainty of
the wing is included, see section 7.1.2. This uncertainty however is also included in the
FFD coordinates. Therefore, to avoid including the geometric flap uncertainty twice,
the contribution due to the uncertain geometry in the flap angle uncertainty is left out.
According to Table 7.1 the flap angle uncertainty becomes σδ = 0.076◦. The uncertainty
values of the other parameters are as determined in sections 6.2 and 7.1.

8.2 Uncertainty Analysis Approach

Input uncertainties are propagated to compute the lift and moment coefficient uncertainty.
The difficulty with the set of important parameters is that both XFOIL and Tornado need
to be used in order to investigate the influence of all the important variables. The geomet-
ric variables, i.e. the control points, need a very accurate representation of the geometry
in the simulation program, which is provided by XFOIL. The gap width however cannot
be included in XFOIL computations but needs three-dimensional Tornado computations.
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Therefore the analysis is performed in multiple steps in order to be able to include all
important uncertain parameters. First a Probabilistic Collocation surface is made using
XFOIL computations. Secondly a kriging surface is obtained using Tornado calculations.
Monte Carlo integration is performed on these surfaces to compute the lift coefficient
uncertainty.

8.2.1 Probabilistic Collocation of XFOIL Computations

Probabilistic collocation is performed on the variables α, δ and the selected control points
CP3,4,5,8,9,10 according to section 4.4. The control points are dependent variables and have
a multivariate normal distribution. In order to be able to calculate collocation points the
distribution needs to be marginalized to obtain independent distributions for each control
point. A PC surface of the lift and moment coefficient can be made using the independent
distributions of α, δ and the control points CP3,4,5,8,9,10.

The PC approximation order is determined by investigating the approximation error. In
order to reduce computational efforts, only the input variables α, δ and CP3,9,10 are used
for the computation of the approximation error. This is based on the assumption that the
control points that are not taken into account have the same effect on the approximation
error as the control points that are taken into account. The approximation error of the
PC order p approximation is computed using the deterministic values of an order 4 PC
approximation as a reference, according to Equation (4.20). The approximation error for
order P = 1, 2, 3 approximations is shown in Figure 8.2. The approximation errors for an
order 3 approximation are similar to an order 2 approximation. This could indicate that
the coefficients are quadratic functions of the input variables. Increasing the polynomial
order would not yield improved approximation results in that case. The error of the
approximation order 1 is sufficiently small for the uncertainty analysis. Multiplication of
the error with its normalization factor yields an average difference between approximation
and deterministic runs of 2.8 · 10−4 for CL and 0.5 · 10−4 for CM . This error is acceptable
for the uncertainty analysis since the uncertainty in the coefficient is estimated to be of
order higher than 10−2.

A PC approximation is obtained for each of the 15 experimental data points, see sec-
tion 2.2.1. The total number of deterministic evaluations of XFOIL amounts to

Nsolves = (P + 1)Nvars · Nd

= (1 + 1)8 · 15 = 3840,

where P is the PC approximation order, Nvars is the number of variables and Nd is the
amount of experimental design data points. The PC surface provides an approximation
of CL as a function of α, δ and CP3,4,5,8,9,10

CX,PC
L (α, δ,CP3,4,5,8,9,10) ,

where CX,PC
L is the lift coefficient computed by XFOIL and approximated using proba-

bilistic collocation.
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Figure 8.2: Error of the PC approximation for various orders P with respect to a fourth
order PC approximation.

8.2.2 Kriging on Tornado Computations

It is impossible to model the influence of the gap width on CL using XFOIL. Therefore,
Tornado is used to obtain CL as a function of the gap width ∆g. The assumption is
made that the gap width is not directly correlated with α, δ and CP3,4,5,8,9,10 but only
indirectly via the lift coefficient. This assumption is made based on the fact that the flow
field is mainly characterized by the lift coefficient.

The PC surface of XFOIL computations and the kriging surface of Tornado computations
are integrated into one mathematical process to obtain the lift coefficient. A relation is
required between the XFOIL computations and the Tornado computations in order to
combine both computational results.

The Tornado computations are performed using a different angle of attack than used for
the XFOIL computations. The Tornado equivalent angle of attack αT is obtained from

CT
L

(
αT ,∆g0

)
= CX,PC

L (α, δ,CP3,4,5,8,9,10) , (8.1)

where CT
L is the Tornado computed lift coefficient and ∆g0 = 0 mm is the zero gap width.

This transformation is based on the simplifying assumption that the zero gap width lift
coefficient corresponds to the two-dimensional XFOIL results. Three-dimensional effects
such as the presence of the side walls and the slits in the side walls are neglected for
simplicity. This procedure is similar to the approach employed for the gap correction in
section 3.3.1. The final lift coefficient including variations in the gap width can now be
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obtained from
CT

L

(
αT ,∆g

)
,

where ∆g is a variable gap width.

It is practically impossible to perform a Tornado computation for each CX,PC
L during the

Monte Carlo simulation. Therefore a kriging surface is obtained according to section 4.3,
using a limited amount of Tornado computations to model the gap width influence.

The transformation from α, δ and CP3,4,5,8,9,10 to equivalent αT , Equation (8.1), is com-
plicated to perform. Therefore a much simpler approach is applied to obtain a kriging
surface of the gap width influence on CL.

Deterministic runs of the Tornado code are required for the kriging surface. Initially a
range of αT inputs are chosen to obtain a broad range in the lift coefficient. This input
range is evaluated for a range of gap sizes ∆g. A lift coefficient discrepancy factor is
obtained as

δCT
L

(
αT ,∆g

)
= CT

L

(
αT ,∆g

)
− CT

L

(
αT ,∆g0

)
,

where again ∆g0 = 0 is the zero gap width. Suppressing the input argument αT this
equation can be written as

δCT
L

(
CT

L (∆g0) ,∆g
)

= CT
L (∆g) − CT

L (∆g0) ,

where CT
L (∆g0) is the zero gap width lift coefficient. The inputs for δCT

L are now not the
transformed angle of attack αT , but only the zero gap width lift coefficient and the gap
width. In this procedure the transformation from XFOIL angle of attack α to equivalent
Tornado angle of attack αT is performed implicitly.

The kriging surface for the discrepancy δCT
L as a function of zero gap width lift coefficient

CT
L (∆g0) and gap width ∆g is shown in Figure 8.3. The kriging prediction error is in the

order of 5 · 10−5 for both the lift coefficient and the moment coefficient.

8.2.3 Integration of PC and Kriging Surrogates

The PC surface outputs and the kriging prediction outputs are combined to compute the
final simulation lift coefficient. Since the zero gap width lift coefficient CT

L∆g=0
agrees

reasonably well with the two-dimensional XFOIL lift coefficient, the latter can now be
used as an input for the lift coefficient discrepancy term. The final lift coefficient CF

L is
computed as

CF
L (α, δ,CP3,4,5,8,9,10,∆g) = CX,PC

L (α, δ,CP3,4,5,8,9,10)

+δCT
L

(
CX,PC

L (α, δ,CP3,4,5,8,9,10) ,∆g
)

.

This approach enables to compare the results of both programs. First, the two-dimensional
lift coefficient as a function of α, δ and CP3,4,5,8,9,10 is computed using the PC surface
of XFOIL data. Second, the two-dimensional lift coefficient is used as an input for the
kriging surface of Tornado data together with the gap width. The resulting lift coefficient
is a function of all input variables and is essentially a three-dimensional computation.
Wind tunnel corrections as well as the chord length correction are applied to this data in
order to compare well with the experimental conditions. A schematic representation of
the computation procedure is shown in Figure 8.4.
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Figure 8.3: Kriging surface of the lift coefficient discrepancy δCT
L as a function of zero gap

width lift coefficient CT
L (∆g0) and gap width ∆g.
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Figure 8.4: Flow diagram of the computation of the lift coefficient by combining XFOIL and
Tornado computations via a PC surface and a kriging surrogate.
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8.2.4 Monte Carlo Integration

Uncertainty results are obtained from Monte Carlo integration on the PC and kriging
surfaces. From the input normal distributions of α, δ, ∆g and the multivariate normal
distribution of the FFD coordinates CP3,4,5,8,9,10, a large number of Monte Carlo samples
is generated. An NMC amount of Monte Carlo 104 samples yields a converged result.

The NMC samples of the input distributions are propagated using the PC surface and
kriging surface as explained in Figure 8.4. The sample mean and standard deviation are
obtained from all the samples of the lift coefficient CF

L . During the experiment steady
measurements are performed at 15 different angle of attack and flap angle input points,
see chapter 2. For each of the 15 experimental input points the Monte Carlo procedure
is performed separately. The same analysis is performed for the moment coefficient CM .

8.3 Uncertainty Results

The input uncertainties, which are described in chapters 6 and 7, are propagated through
PC and kriging surfaces of XFOIL and Tornado data to obtain uncertainties in the aero-
dynamic quantities. The uncertainty analysis is only performed for the lift and moment
coefficients.

8.3.1 Uncertain Lift Coefficient

Figure 8.5 shows the results of the uncertainty analysis together with the experimental
data for the lift coefficient. The shaded areas correspond to uncertainty intervals of 2
standard deviations, which correspond to approximately 95% of all possible outcomes.
The standard deviation of the measurements is computed by adding two contributions,
assuming normal distributions for the uncertain quantities. One contribution originates
from the noise between the data samples that are recorded for 1 data point. The other
contribution is caused by measurement equipment inaccuracies, which are reported in
section 2.1.3.

The CL − α and CL − δ curves in Figure 8.5 show roughly a linear discrepancy between
the simulation results and the observations. For α larger than -2 degrees even uncertainty
intervals of 2 standard deviations do not show overlap. Between the CL − δ curves no
overlap is present for δ larger than 2 degrees.

The average standard deviation for the lift coefficient simulation results amounts to 0.025,
which is equivalent to an uncertainty of 0.30 degrees in angle of attack. It means that
the combined effect of all the input uncertainties taken into account in the uncertainty
analysis are equivalent to an input uncertainty of 0.30 degrees in the angle of attack.
This value is relatively low since it is only slightly larger than only the input standard
deviation of the uncertain angle of attack, which is 0.263 degrees.

8.3.2 Uncertain Moment Coefficient

The uncertain moment coefficient data of the measurements and the simulations are shown
in Figure 8.6. Again the shaded areas indicate uncertainty intervals corresponding to 2
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Figure 8.5: The uncertain lift coefficient is compared with experimental lift coefficient data.
The shaded areas between the dashed lines correspond to an uncertainty interval
of 2 standard deviations.
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standard deviations. The standard deviation of the measurements is computed similar to
the uncertainty of the observed lift coefficient data.

The average standard deviation for the moment coefficient amounts to 2.3·10−3CM , which
is equivalent to a flap angle standard deviation of 0.28 degrees. This value is considerably
higher than the input flap angle uncertainty of 0.076 degrees because it corresponds to
the uncertainties of the experimental as well as the geometric input parameters. However,
it is only half the flap angle uncertainty estimated in section 7.1, which is 0.585 degrees.
In this section the flap angle uncertainty due to the geometry was estimated to be 0.58
degrees. The uncertainty analysis has revealed that the total CM uncertainty corresponds
to a flap angle uncertainty smaller than 0.58 degrees. Therefore the initial estimate was
too conservative.

The CM −α as well as the CM −δ curve show clearly discrepancies between the simulation
results and the observational data. Similar to the lift coefficient data the simulation results
for α smaller than -2 degrees correspond better to the observations than for α larger than
-2 degrees. The discrepancy between simulation results and observation is approximately
linear in α and also linear in δ.

8.3.3 Discrepancies between Simulations and Observations

The discrepancy between observations and simulations can either be caused by model
inadequacy or by improper input uncertainty estimates. Because of the fact that the
discrepancy is large it is highly likely that it is caused by model inadequacy.

Within the model employed to obtain the simulation lift coefficients inadequacy can be
introduced by XFOIL, by Tornado or by the gap correction. A source of the inadequacy
in XFOIL that can be deducted from analysis in this thesis is related to the boundary
layer computations. The determination of the tripping location in section 3.1.2 shows
that the lift and moment coefficients are sensitive to the location of tripping.

Model inadequacy furthermore is likely to be introduced in the gap correction. The gap
correction is obtained from inviscid computations and applied to viscous computations.
This fundamental difference inevitably causes errors. Furthermore, the estimate of the
mean gap width of 4 mm can deviate from the true input value and consequently cause
considerable discrepancies. The gap width influence is obtained from Tornado computa-
tions with a large range of angle of attack. This limits the accuracy as well since VLM
computations are based on the assumption of small angles. And finally, simulation codes
will never represent reality exactly but there will be always discrepancies present.

The errors introduced by the PC approximation are unimportant since they are approx-
imately a factor of 1/100th smaller than the lift and moment coefficient uncertainties.
The kriging prediction error is even smaller than the PC approximation error and will
therefore also have negligible influence. Since the finest grids are used for the XFOIL and
Tornado computations the small discretization errors apply to the uncertainty results.
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Figure 8.6: Comparison of the uncertain moment coefficient with experimental moment
coefficient data. The shaded areas between the dashed lines correspond to an
uncertainty interval of 2 standard deviations.
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8.4 Implications of the Uncertainty Results

It must be concluded that the computed output uncertainties do not represent the total
error between simulations and observations since only little overlap is present between
the uncertainty intervals of the simulations and observations. This can be caused by
underestimation of the input parametric uncertainties, by having missed certain input
parameters or by the exclusion of model inadequacy errors from the uncertainty analysis.
The latter reason is most probable since really systematic discrepancies are present be-
tween the curves and the simulated CM − α curve shows a very different behavior than
the observations curve.

Although the fact that the output uncertainties do not represent the total error, the
uncertainty estimates are still suitable for validation purposes. A reasonable assumption
is that the model inadequacy causes mainly a constant discrepancy in the results and
has minor influence on output variations and thus on the uncertainty estimates. This
assumption justifies to add the simulation output uncertainty to the measurement error
distributions to obtain a proper estimate of the uncertainty of the experimental results.
The experimental results uncertainty estimates include measurement uncertainties as well
as input uncertainties and are a valuable input for the validation of computer codes with
respect to the uncertain observations.

Inferences about the uncertainties in the fluid-structure interaction experiment can be
made using the output uncertainties on the lift and moment coefficient around zero angle
of attack and zero flap angle. The applicability of these results is limited by the fact
that the flow is changed for this case from steady to unsteady. Furthermore, additional
uncertain inputs are present in the experiment, such as the flap deflection amplitude and
the period of the oscillation cycles. These facts introduce additional uncertainties in the
experiment yielding probably larger output uncertainties than estimated for the steady
case.
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Chapter 9

Calibrated Prediction

The uncertainty characteristics of the experimental outputs have been obtained from
uncertainty analysis. By combining the experimental observations with the simulation
model inferences can be made about the uncertain input variables. Reducing input un-
certainties by using observations is known as the inverse problem. The inverse problem
is investigated using a Bayesian calibration technique.

The calibration framework is based on the use of Gaussian processes, as explained in
section 9.1. The specific approach required to solve the calibration problem is outlined in
section 9.2. The results of the calibration are presented and discussed in section 9.3.

The steady experiment has provided relatively accurate lift and moment coefficient data.
The drag however has been measured with strain gauges that are subject to large mea-
surement errors. Therefore, predictions of the drag coefficient are made using computer
codes with the calibration estimates as inputs, as discussed in section 9.4.

9.1 Calibration Framework

Prior to the prediction of the drag coefficient, the computer code inputs are calibrated
using observational data for CL and CM . The calibration framework employed in this
chapter is based on work of Kennedy & O’Hagan [2001a] and Kennedy & O’Hagan [2001b].

9.1.1 Statistical Model

Calibration refers to estimating unknown or uncertain code input parameters such that
the observational data zi fit the code outputs as closely as possible. The relationship
between the observations zi, the true process ζ and the computer model output η is
represented by

zi = ζ (xi) + ei = η (xi,θ) + κ (xi) + ǫi, (9.1)

85
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where ei is the observation error for the ith observation. The observation error is assumed
to be normally distributed with zero mean and standard deviation λ, i.e. ei ∼ N (0, λ).
Discrepancies between real process and computer model are accounted for by the dis-
crepancy term κ. Furthermore, the simulations residual variation is denoted by ǫi. A
distinction is made between the variable inputs xi and the calibration parameters θ, i.e.
the input parameters to be calibrated. The true calibration parameters θ provide the
best fit of the simulation data to the observations according to the error structure of the
statistical model.

Models are never perfect and represent reality never exactly. Therefore usually the dis-
crepancy term κ is included in the statistical model. The discrepancy term is modeled
as a function of the variable inputs xi using Gaussian processes. It is estimated based
on the observational data. In certain cases it may be difficult or impossible to model
the discrepancy term, e.g. due to the fact that little observational data at uncorrelated
inputs is available. In that case the discrepancy term is simply left out, implying that the
calibrated inputs will be subject to errors due to model inadequacy.

Because of the fact that computer model output η is relatively expensive to acquire, a
surrogate is obtained using kriging, as described in section 4.3.

The uncertain or unknown calibration parameters can either be physical quantities that
are present in both the experiment and the computer code or code input parameters that
are not present in the experiment. In case the computer model represents reality very
accurately the calibrated parameters can be said to correspond to the true experimental
input parameters for physical input parameters. Input parameters that only occur in the
computer code are model specific parameters. Those inputs exist for example as constants
in turbulence modeling methods.

9.1.2 Posterior Distribution

The mathematical framework for calibration is very similar to the cokriging framework
described in section 4.3.2. In fact the simulation outputs are equivalent to the low fi-
delity dataset and the observations to the high fidelity dataset. The main difference with
cokriging is that the important output for calibration is he likelihood function instead of
cokriging predictions.

Data Distribution

The calibration inputs are estimated using a Markov chain Monte Carlo approach on
the posterior distribution of the calibration parameters, according to section 4.5. The
posterior distribution is derived in a Bayesian way using the data likelihood function.
The full data vector d is modeled as a Gaussian process conditional on the calibration
parameters θ and the hyperparameters φ.

The set of points at which the code outputs y are computed is denoted by the input data
vector D1 = {(x∗

1, t1) , . . . , (x∗
N , tN )}, where N refers to the number of simulation outputs.

The set of inputs for the observations z is denoted by D2 = {x1, . . . ,xn}, where n refers
to the number of observations. The set of observation inputs can be augmented with the
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calibration parameters θ yielding the augmented dataset D2 (θ) = {(x1,θ) , . . . , (xn,θ)}.
The expectation of the full data vector d is given by

E (d|θ,β,φ) = md (θ) = H (θ)β, (9.2)

where

H (θ) =

(
H1 (D1) 0

H1 (D2 (θ)) H2 (D2)

)
. (9.3)

In these equations the rows of the Hi matrices are formed by hi (x
∗
1, t1) , . . . ,hi (x∗

N , tN ),
where hi is a vector of regression functions.

The variance matrix Vd of the distribution of the full data vector d is defined by

var (d|θ,β,φ) = Vd (θ) (9.4)

=

(
σ2

1A1 (D1,D1) + ǫIN σ2
1A1 (D1,D2 (θ))

σ2
1A1 (D2 (θ) ,D1) σ2

1A1 (D2 (θ) ,D2 (θ)) + σ2
2A2 (D2,D2) + λIn

)
,

where In is the n × n identity matrix. The element i, j of the matrix of correlations
At (Dk,Dl) between data sets Dk and Dl is given by

At

(
x

(k)
i , x

(l)
j

)
= exp

{
−
∑

m

1

2b2
tm

(
x

(k)
im − x

(l)
jm

)2
}

for all x
(k)
i ∈ Dk and x

(l)
j ∈ Dl, where btm are the correlation parameters and t = 1, 2.

In case the model discrepancy term κ is left out from the statistical model, Equation (9.1),
the H matrix and the variance matrix Vd change to

H (θ) =

(
H1 (D1)

H1 (D2 (θ))

)
, (9.5)

Vd (θ) =

(
σ2

1A1 (D1,D1) + ǫIN σ2
1A1 (D1,D2 (θ))

σ2
1A1 (D2 (θ) ,D1) σ2

1A1 (D2 (θ) ,D2 (θ)) + λIn

)
. (9.6)

Because no discrepancy term is included the calibration tries to find the best fit of the
simulation outputs to the observations without discrepancy, taking into account only the
residual variation ǫi and the observation error ei.

Joint Posterior Distribution

The full joint posterior distribution is obtained from the likelihood function and the prior
distributions as

p (θ,β,φ|d) ∝ L {d;md (θ) ,Vd (θ)} p (θ) p (β) p (φ) , (9.7)

where the likelihood function L {d;md (θ) ,Vd (θ)} is the N {md (θ) ,Vd (θ)} density
function and p (θ) is the prior distribution for the calibration parameters. Furthermore
p (β) and p (φ) are priors for the hyperparameters β and φ. Markov chain Monte Carlo
integration is applied to Equation (9.7) to obtain calibration parameter estimates.
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Estimation of Regression Parameters and Hyperparameters

The regression parameters β can be obtained from completing the square in the exponent
of the likelihood function as

β̂ (θ) = W (θ)H (θ)Vd (θ)−1 d, (9.8)

W (θ) =
(
H (θ)T V (θ)−1

d
H (θ)

)−1
.

Integrating out β yields an extra term W (θ) in the data likelihood function, which is
given by

L (d|θ) ∝ |Vd (θ)|−1/2 |W (θ)|1/2 exp

{(
d − H (θ) β̂

)T
Vd (θ)−1

(
d − H (θ) β̂

)}
.

In order to reduce the amount of parameters to be estimated, the hyperparameters φ for
the observations are estimated prior to the McMC simulation. The procedure to estimate
the hyperparameters is similar to the procedure employed for the estimation of cokriging
hyperparameters, see section 4.3.2.

Since the regression parameters β and the hyperparameters φ are excluded from the
McMC simulation, their prior distributions p (β) and p (φ) are left out from the joint
posterior distribution, Equation (9.7).

9.2 Calibration Approach

The calibration approach can be broken down into various aspects. Initially a clear
definition of the variable inputs and calibration parameters is necessary, as discussed
in section 9.2.1. Section 9.2.2 describes the process of acquiring simulation data. A
discussion of the statistical model and the posterior distribution is given in sections 9.2.3
and 9.2.5 respectively.

9.2.1 Calibration Inputs

In the calibration process a clear distinction needs to be made between the variable inputs
x and the calibration parameters θ. The full set of inputs that are used for the uncertainty
analysis in chapter 8 are taken as the set of available inputs for calibration. In section 8.1
it is concluded that the most important parameters are the angle of attack α, the flap
angle δ, the gap width ∆g and a number of the FFD control points CPi. In order to
reduce the amount of calibration parameters, the assumption is made that the geometric
variation as modeled by the FFD control points can be approximated by variations in α
and δ. The variables that remain are the angle of attack, flap angle and the gap width.
The downward flap deflection direction is defined as positive.

During the experiment, for each measurement point the angle of attack and flap angle
are set according to the procedure specified in section 2.1.3. Because the procedure and
measurement equipment are similar for all measurement points it is assumed that the
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uncertainty in the angle of attack and the flap angle is mainly caused by a constant offset
∆α and ∆δ. Since the gap width is not measured during the experiment it is treated as
an unknown calibration input. The calibration input vector consists of θ = {∆α,∆δ, g}.
The variable inputs are formed by the values of the angle of attack and flap angle that
are set during the experiment. The experimental design input values for the angle of
attack and flap angle are denoted by α0 and δ0 respectively. The variable input vector
therefore is given by x = {α, δ}. Note that the calibration inputs and the variable inputs
are related to each other via

α = α0 + ∆α,

δ = δ0 + ∆δ.

As explained later this relationship will cause problems for the discrepancy term in the
statistical model.

9.2.2 Generation of Simulation Data

Simulation data are generated in a similar way as is done during the uncertainty analysis,
see section 8.2. XFOIL computations are performed for a range of angle of attack and flap
angle. Using the kriging model of the lift and moment coefficient discrepancy terms, see
section 8.2.2, the influence of the gap width is included for ∆g = 0 . . . 30 mm. The wind
tunnel and chord length corrections are applied to the resulting aerodynamic coefficients
and the angle of attack, according to section 3.3. In order to be able to model the lift
coefficient as a function of the variable inputs and calibration parameters the following
relation is applied

CS
L (α0, δ0,∆α,∆δ,∆g) = CF

L (α0 + ∆α, δ0 + ∆δ,∆g) ,

where CF
L is computed as explained in section 8.2 and CS

L is the simulation lift coefficient
used for calibration. The same is applied to obtain the moment coefficient simulation
data. Finally kriging is applied to the lift coefficient and moment coefficient data as a
function of α0, δ0, ∆α, ∆δ and ∆g.

The input airfoil for the XFOIL computations is the DU96W180 airfoil. This airfoil
is selected based on the assumption that geometric variations can be translated into
variations in angle of attack and flap angle. The calibration will provide calibrated inputs
where the geometric uncertainty is taken into account as an equivalent angle of attack
and flap angle.

9.2.3 Discrepancy Modeling

The comparison of the experimental observations and the simulation data in section 8.3
has shown that, even taking into account input parametric uncertainties, there are clearly
discrepancies present between the observational data and the simulations. The discrep-
ancy between simulations and observations shows roughly a linear behavior in angle of
attack for the lift coefficient data as well as the moment coefficient data. The discrepancy
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term can be modeled as a function of the variable inputs using regression functions that
are linear in α0 and independent of δ0.

This approach of modeling the discrepancy will yield bad results since variations in the
variable inputs α0 and δ0 are interchangeable with variations in the calibration parameters
∆α and ∆δ. Modeling the discrepancy as a function of α0 makes it impossible to calibrate
for systematic uncertainties in ∆α. Furthermore, the calibration will not yield the best
fit of the simulation data to the observational data for the lift coefficient and moment
coefficient as a function of angle of attack and flap angle. A considerable discrepancy will
always exist since it has been modeled explicitly in the statistical model.

The approach followed here to handle this discrepancy related problem is to leave the
discrepancy term completely out, in order to be able to calibrate for ∆α and ∆δ and
obtain the best fit of the simulations to the observations. Note that the estimates for
the calibration parameters will also include model inadequacy errors due to the fact
that no model inadequacy discrepancy has been modeled. Therefore, when assessing the
calibration results it should be taken into account that the calibrated parameters do not
represent physical quantities.

9.2.4 Prior and Proposal Distributions

In section 8.3 it has been concluded that even taking into account uncertainties the sim-
ulation data do not resemble the observational data. Therefore, the existing uncertainty
levels that are used for the uncertainty analysis are unsuitable for a Bayesian prior. The
uncertainty estimates in section 7.1 are increased to be included in the prior distributions
for the Bayesian calibration.

Normal priors are used for ∆α and ∆δ with

∆α ∼ N
(
0, 12

)
,

∆δ ∼ N
(
0, 12

)
.

An inverse gamma distribution is used for the prior distribution of the gap width ∆g.
The inverse gamma distribution is given by

f (x; γ, β) =
βγ

Γ (γ)
(x)−γ−1 exp

(
−β

x

)
(9.9)

with shape parameter γ and scale parameter β, where Γ (γ) = (γ − 1)!. There exist closed
form expressions for the expectation and variance of the inverse gamma distribution in
terms of the shape parameters. Since the mean and variance are convenient in use the
shape and scale parameters are expressed as a function of the mean and square root of
the variance, which are denoted by µIG and σIG respectively. The relationship between
the parameters is given by

γ =

(
µIG

σIG

)2

+ 2,

β = µIG

((
µIG

σIG

)2

+ 1

)
.
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Employing these parameters the inverse gamma distribution is formulated as

IG (µIG, σIG) = f (x; γ, β) .

Using this formulation of the inverse gamma distribution the gap width is distributed as

∆g ∼ IG (0.004, 0.005) .

The proposal distributions for ∆α and ∆δ are independent normal distributions with
constant standard deviations. The proposal distribution for the gap width ∆g is chosen to
be an inverse gamma distribution, also with constant σIG. The inverse gamma distribution
has the advantage of preventing unrealistic negative samples for the gap width. Due to
the fact that the kriging surfaces are only made for a certain range of the input variables,
the proposal samples are prevented to exceed this range.

9.2.5 McMC Simulation on the Posterior Distribution

observational data is available for the lift coefficient and moment coefficient. For each
coefficient a different kriging model is obtained. Furthermore, no discrepancy is taken
into account for the CL and CM data.

The likelihood function of the lift coefficient data reads

L (dCL
|θ) ∝

∣∣∣VdCL
(θ)
∣∣∣
−1/2

|W (θ)|1/2

exp
{

(dCL
− H (θ)β)T

VdCL
(θ)−1 (dCL

− H (θ) β)
}

,

where H (θ) and VdCL
(θ) are according to Equations (9.5) and (9.6) respectively. Since

the discrepancy term is excluded from the statistical model, no additional regression
parameters and hyperparameters need to be estimated. A similar likelihood function is
obtained for the moment coefficient data.

The full joint posterior distribution is given by

p (θ|dCL
,dCM

) ∝ L (dCL
|θ) L (dCM

|θ) p (θ) , (9.10)

where p (θ) is the prior distribution on the calibration parameters.

Markov chain Monte Carlo simulation is performed on the joint posterior distribution.
The burn in size is determined by investigating the curves of the calibration parameter
values in the Markov chain. Convergence is checked by performing various runs with
different starting samples and various chain size.

9.3 Calibration Results

Before presenting the results of the Bayesian calibration the likelihood functions are exam-
ined to provide insight in the relation between observational data and calibration param-
eters, see section 9.3.1. The actual results for the calibration parameters are presented
in section 9.3.2. Finally, in section 9.3.3 the uncalibrated and calibrated simulations
are compared with the observations to show the implications of the calibration on the
simulations.
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9.3.1 Features of the Log-likelihood Functions

Investigation of the likelihood functions of the lift and moment coefficients provides in-
formation about the estimates of the calibration parameters. Figure 9.1 shows contour
graphs of the logarithms of the likelihood functions of CL and CM separately and of the
sum of both likelihood functions. The maximum values correspond to the best estimate
of the calibration parameters. Only the angle of attack discrepancy ∆α and flap angle
discrepancy ∆δ are investigated here.
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Figure 9.1: Contour plots of the log-likelihood functions versus the angle of attack dis-
crepancy ∆α and the flap angle discrepancy ∆δ. The characteristics of the
log-likelihood function of the lift coefficient log L (dCL

|θ) are shown separately
from the characteristics of the log-likelihood function of the moment coefficient
log L (dCM

|θ). Subfigure (c) presents the contour plot of the sum of the log-
likelihood functions of CL and CM and subfigure (d) the contour plot of the
logarithm of the full joint posterior distribution.

Investigating the log-likelihood function of CL in Figure 9.1a yields the observation that
the best estimates of the calibration parameters lie on a line in the ∆α−∆δ plane, when
taking only into account the CL observational data. The fact that the best estimates lie
on a line indicates that the calibration parameters ∆α and ∆δ are interchangeable for the
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lift coefficient. The gradient of the line is approximately equal to -2. This corresponds to
the conclusion from the sensitivity derivatives that the lift coefficient is twice as sensitive
to variations in angle of attack than to variations in flap angle.

The contour plot of the log-likelihood function of CM shows that the moment coefficient
observations do not provide much information about the best estimate for ∆α. This can
be concluded from the fact that the major axis of the ellipse is nearly aligned with the
∆α-axis. The moment coefficient observations however provide clear information about
the best estimate for ∆δ.

The contour plot of the sum of log-likelihood functions in Figure 9.1c shows that the joint
posterior distribution will be dominated by the lift coefficient observations. This is partly
caused by the fact that the discrepancy between simulations and observations for the
moment coefficient is clearly more severe than for the lift coefficient. The joint posterior
distribution is obtained from adding the prior distribution to the sum of log-likelihood
functions.

9.3.2 Estimates of the Calibration Parameters

Calibration is performed using the joint posterior distribution, Equation (9.10). Con-
vergence of the McMC simulation is checked by performing multiple runs with various
chain size and starting points. A chain size of 105 samples yields converged results for the
calibration estimates. The sample mean and the covariance of the chain are computed
yielding the calibration results presented in Table 9.1. In this table the standard devi-
ation denotes the square root of the diagonal elements of the covariance matrix of the
calibration parameters.

Mean Standard deviation

∆α [◦] -0.84 0.42
∆δ [◦] 0.03 0.76
∆g [mm] 7.95 3.76

Table 9.1: Calibration estimates for the parameters angle of attack discrepancy ∆α, flap
angle discrepancy ∆δ and gap width ∆g.

The resulting calibration estimates are the values of the calibration parameters that yield
the best fit of the simulations to the observational data, given the error structure of the
statistical model. The calibration estimate of the angle of attack discrepancy ∆α amounts
to -0.84 degrees and the uncertainty expressed in the standard deviation amounts to 0.42
degrees. Furthermore, the calibration estimate of the flap angle discrepancy ∆δ amounts
to 0.03 degrees and the uncertainty amounts to 0.76 degrees.

Notice that the estimates of ∆α and ∆δ deviates from the maximum of the log-likelihood
functions visible in Figure 9.1c. This is caused by influence of the prior distributions on
the joint posterior distribution. The fact that the standard deviations are rather large
is mainly caused by the interchangeability of both parameters for the calibration of the
lift coefficient data. Note that the calibration estimate of ∆α lies outside the estimated
input uncertainty range of 0.263 for the angle of attack, see Table 7.1. This is mainly
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caused by the fact that the discrepancy between simulations and observational data has
not been modeled explicitly by a discrepancy function.

The calibration estimate for the gap width ∆g amounts to 7.95 mm. It is considerably
larger than the prior estimate of 4 mm. Furthermore, after the analysis the gap width is
measured manually in the experimental setup and amounts approximately to 2 mm. The
difference between the true physical gap width and the calibration estimate originates
from the fact that the estimate of the gap width accounts for model inadequacy as well.
The large standard deviation is mainly caused by the fact that variations of the lift and
moment coefficient due to the gap width are very small for large gap width.
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Figure 9.2: Simulated lift and moment coefficient data for uncalibrated and calibrated inputs
compared with the observational data. The shaded areas indicate a measure-
ment uncertainty of 2 standard deviations.

9.3.3 Calibrated Simulations

The effect of the calibrated parameters on the simulations is shown in Figure 9.2. The lift
and moment coefficient data are shown as a function of the variable inputs α0 and δ0. The
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calibrated lift coefficient data shows good agreement with the observational data. The
agreement in the moment coefficient data is improved, however it is not as good as the
agreement in lift coefficient data. This is caused by the fact that the posterior distribution
is dominated by the lift coefficient observations, as explained in section 9.3.1. The low
influence of the moment coefficient data on the calibration results flows mainly from the
fact that the measurement error is relatively large with respect to the data range, see
Figures 9.2c and 9.2d. For the lift coefficient the measurement error is small with respect
to the data range, therefore the log-likelihood function of the lift coefficient has a sharp
maximum.

The correlations between the calibration parameters ∆α and ∆δ can be extracted from
Figure 9.2 as well. The interchangeability of both parameters for the lift coefficient data is
clearly visible. An increase in either the angles of attack or the flap angles would yield the
same agreement of simulation data with the observations. The moment coefficient curves
indicate that changing the angles of attack does not especially yield better agreement,
whereas changes in the flap angles would yield better agreement.

9.4 Prediction of the Drag Coefficient

During the experiment no trustworthy results for the drag coefficient are obtained. There-
fore drag coefficient data is obtained from the simulation codes. A kriging surface of the
drag coefficient is made in a similar way as the kriging surfaces of the lift and moment
coefficient. The kriging surface is based on simulation data from XFOIL where the gap
width influence is introduced according to Tornado computations. The simulation data
has been corrected for wind tunnel effects and the chord length discrepancy according to
section 3.3.

From the multivariate distribution of the calibration parameters, 104 samples are gener-
ated. The drag coefficient is computed for each input sample using the kriging surface.
The sample mean and standard deviation are computed for the collection of all drag co-
efficient samples. This procedure is performed for each experimental data point yielding
the CD − α and CD − δ curves shown in Figure 9.3.

The standard deviation varies with angle of attack and flap angle. The minimum in the
CD − α curve is predicted at α ≈ −2. Figure 9.3b shows that the flap deflection angle is
less influential for the drag coefficient than the angle of attack. This is partly caused by
the fact that the lift coefficient, and thereby the induced drag, is less sensitive to the flap
angle than to the angle of attack. Furthermore, the angle of attack is more influential for
the front area of the wing that influences the pressure drag. Also the transition location
and thereby the skin friction are sensitive to the angle of attack, and less sensitive to the
flap angle.
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Figure 9.3: Predictions of drag coefficient data for the calibrated input parameters. The
shaded areas correspond to uncertainty intervals of one standard deviation.



Chapter 10

Conclusions and Recommendations

This chapter summarizes the most important conclusions of this thesis and presents rec-
ommendations for future research.

10.1 Conclusions

The fluid-structure interaction experiment in this thesis was meant to provide two-dimensional
data ideally. Three-dimensional features are tried to be excluded using side walls. How-
ever, investigating the influence of the gap width on the lift coefficient yields the obser-
vation that a small increase in gap width from 0 to 10 mm reduces the lift coefficient
considerably.

An accurate geometric model is obtained by applying cokriging to CMM measurements
and photogrammetry measurements of the wing geometry. The investigation of the wing
geometry has revealed that geometric deviations from the design airfoil DU96W180 are
mainly present in the middle chord region and the flap region. The measured wing ge-
ometry is approximated by deforming the design airfoil using a Free Form Deformation
parameterization. Sensitivity analysis of the FFD parameters has revealed that the lift
coefficient is most sensitive to geometric changes in the flap region. Combining the ge-
ometric uncertainty information with the sensitivity derivatives yields the result that
the most important FFD parameters are the ones located near the trailing edge. The
importance of the parameters decreases when moving forward towards the leading edge.

The influence on the lift coefficient of the uncertain parameters angle of attack, flap angle,
free stream velocity and gap width has been investigated. The sensitivity derivatives of
the parameters show that the lift coefficient is twice as sensitive to variations in the angle
of attack than to variations in the flap angle. Furthermore, the sensitivity derivative of
the gap width is very high due to the fact that increasing the gap width from 0 to 10
mm induces a considerable decrease in lift coefficient due to the emergence of tip vortices.
From the scaled sensitivity derivatives it can be concluded that the flap angle is the most
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important input variable, followed by the angle of attack. The gap width and the free
stream velocity are relatively unimportant.

The most important uncertain input variables are used for the uncertainty analysis. The
uncertainty of the lift coefficient and moment coefficient due to input uncertainties is
quantified using a probabilistic collocation approximation of XFOIL simulations and a
kriging surrogate of Tornado simulations. Large discrepancies between the simulations
and observations indicate that the model does not represent the observations given the
uncertainties and measurement errors. The disagreement between simulations model and
observations is believed to be mainly caused by model inadequacy errors, which have not
been taken into account in the uncertainty analysis.

The uncertainty analysis results show clearly the presence of discrepancies between simula-
tions and observations. These discrepancies are partly caused by systematic uncertainties
in the input parameters. Bayesian calibration is performed to estimate the constant offset
in angle of attack and flap angle due to systematic uncertainties. Furthermore, the gap
width is included as a calibration parameter as well because it has not been measured
during the experiment. The resulting calibration estimates yield a good fit of the lift
coefficient simulations to the observations. Due to the fact that the measurement error of
the moment coefficient observations is large with respect to the data range the calibrated
moment coefficient simulations show less agreement with the observations. Due to the
fact that the discrepancy between simulations and observations due to model inadequacy
has not been taken into account, the calibration estimates account for model inadequacy
errors as well as input parametric uncertainties.

Combining the uncertainty characteristics with the observational data yields the required
inputs for the validation of computer codes. Validation using the predicted drag coefficient
will be problematic due to the discrepancy introduced by model inadequacy.

10.2 Recommendations

The recommendations for future research that are discussed here are related to the ex-
periment and various parts of the uncertainty quantification.

Regarding the experiment several improvements are proposed to reduce uncertainties.
Since only a small gap width is sufficient for the development of wing tip vortices, it
might be beneficial to attach side plates to the wing ends. This prevents the formation
of wing tip vortices and makes the flow two-dimensional. The uncertain wing geometry
has proven to be one of the major causes of output uncertainties. Therefore care must
be taken when manufacturing the wing. Reduction of the uncertainties in the angle of
attack and flap angle can be achieved by making a new mold based on the geometric
model that is obtained in this thesis. These measures are likely to reduce the uncertainty
of the observations.

The determination of the control weight distribution is performed using a simple least
squares approach. Results can possibly be improved by employing Bayesian regression
or Bayesian calibration techniques. Furthermore three-dimensional computations on the
cokriging wing model can yield improved estimates with respect to the two-dimensional
computations. Since XFOIL can only perform two-dimensional computations in this
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thesis the three-dimensional wing is transformed into a two-dimensional profile adding
the variation in the span wise direction as uncertainty on the two-dimensional profile.
This is a simplification that adds uncertainty to the computations, which can be avoided
by performing three-dimensional computations.

The results of the sensitivity analysis and uncertainty analysis can be improved by using
more accurate simulation codes. The choice for the codes employed in this thesis was
mainly based on the requirement of low computation time. Combining many runs of the
cheap codes with few runs of accurate and expensive CFD codes using cokriging improves
the accuracy. This can reduce the discrepancy due to model inadequacy and can yield
improved uncertainty estimates.

Improved estimates of the uncertain input parameters can be obtained by introducing
changes in the Bayesian calibration approach. Generating more observational data, for
example at different Mach numbers, would enable to model the discrepancy due to model
inadequacy. This would greatly improve the calibration estimates. In case it is impossible
to generate more observational data it might be possible to model the discrepancy due to
model inadequacy outside the calibration procedure by assuming an analytic discrepancy
function on the simulation data. This analytic expression should be based on expert
knowledge about the performance of the simulation codes and the discrepancies that
exist between the codes and other experiments.

The angle of attack discrepancy and flap angle discrepancy are intrinsic parameters in
the angle of attack and flap angle. This enables to apply kriging to lift coefficient data as
a function of only three variables, the angle of attack, the flap angle and the gap width.
Calibration on a kriging surface of only three variables instead of a kriging surface of
five variables will requires less computational efforts. It is recommended to investigate
possibilities to improve on the Bayesian calibration method when calibration parameters
are in fact intrinsic in the variable inputs.

It is recommended to improve on the prediction of the drag coefficient by including accu-
rate simulations of expensive codes. Cokriging provides excellent possibilities to combine
the low fidelity data with few accurate simulations.
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Forrester, A. I. J., Sóbester, A., & Keane, A. J. (2007). Multi-fidelity optimization via
surrogate modelling. Proceedings of the Royal Society A, Vol.463 , pp. 3251 – 3269.

Golub, G. H., & Welsch, J. H. (1969). Calculation of Gauss Quadrature Rules. Mathe-
matics of Computation, Vol.23(106), pp. 221 – 230.

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their
applications. Biometrika, Vol.57 , pp. 97 – 109.

Kennedy, M. C., & O’Hagan, A. (2000). Predicting the output from a complex computer
code when fast approximations are available. Biometrika, Vol.87 , pp. 1 – 13.

Kennedy, M. C., & O’Hagan, A. (2001a). Bayesian calibration of computer models.
Journal of the Royal Statistical Society B , Vol.63 , pp. 425 – 464.

Kennedy, M. C., & O’Hagan, A. (2001b). Supplementary details on Bayesian Calibration
of Computer Models (No. Internal report). University of Sheffield.

101

http://web.mit.edu/drela/Public/web/xfoil/


102 References

Liang, F., Liu, C., & Carroll, R. J. (2010). Advanced Markov Chain Monte Carlo Methods:
learning from past samples. Chichester, West Sussex, UK: John Wiley & Sons Ltd.

Loeven, G. J. A. (2010). Efficient uncertainty quantification in computational fluid
dynamics. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands.

Loeven, G. J. A., & Bijl, H. (2008). Probabilistic Collocation used in a Two-Step approach
for efficient uncertainty quantification in computational fluid dynamics. Computer Mod-
eling in Engineering & Science, Vol.36 , pp. 193 – 121.

Melin, T. (2000). A Vortex Lattice MATLAB Implementation for Linear Aerodynamic
Wing Applications. MSc. Thesis, Royal Institute of Technology (KTH), Stockholm,
Sweden.

Metropolis, N., RosenBluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E.
(1953). Equations of state calculations by fast computing machine. Journal of Chemical
Physics, Vol.21 , pp. 1087 – 1091.

Pearson, K. (1901). On Lines and Planes of Closest Fit to Systems of Points in Space.
Philosophical Magazine, Vol.2(6), pp. 559 – 572.

Sederberg, T. W., & Parry, S. R. (1986, August). Free-form deformation of solid geo-
metric models. In Proceedings of the 13th annual conference on computer graphics and
interactive techniques (Vol. 20, pp. 151–160). New York, NY, USA.

Wang, S., Chen, W., & Tsui, K. L. (2009). Bayesian Validation of Computer Models.
Technometrics, Vol.51 , pp. 439 – 451.

Wikle, C. K., & Berliner, L. M. (2006). A Bayesian tutorial for data assimilation. Physica
D , Vol.230 , pp. 1 – 16.


	Summary
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	1.1 Literature Review
	1.2 Fluid-Structure Interaction Experiment
	1.3 Uncertainty Quantification

	2 Wind Tunnel Experiment
	2.1 Experimental Apparatus and Conditions 
	2.1.1 Open Jet Facility 
	2.1.2 Wind Tunnel Test Model
	2.1.3 Measurement Equipment

	2.2 Experimental Test Cases 
	2.2.1 Steady Case
	2.2.2 Fluid-Structure Interaction Case

	2.3 Results of the steady case 

	3 Simulation Methods
	3.1 XFOIL Panel Method
	3.1.1 General Concept
	3.1.2 XFOIL Settings 
	3.1.3 Grid Convergence Study

	3.2 Tornado Vortex Lattice Method
	3.2.1 General Concept
	3.2.2 Grid Convergence Study

	3.3 Corrections
	3.3.1 Gap Correction
	3.3.2 Wind Tunnel Corrections 
	3.3.3 Chord Length Correction


	4 Uncertainty Quantification Methodology
	4.1 Classification of Errors 
	4.2 Bayesian Inference
	4.3 Kriging
	4.3.1 Universal Kriging
	4.3.2 Cokriging
	4.3.3 Simple Cokriging Example

	4.4 Probabilistic Collocation
	4.4.1 Polynomial Chaos Expansion
	4.4.2 Collocation Points
	4.4.3 Uncertainty Analysis
	4.4.4 Sensitivity Analysis
	4.4.5 PC Approximation Convergence Study

	4.5 Markov Chain Monte Carlo Method
	4.5.1 Monte Carlo Principle
	4.5.2 Markov Chains and the Metropolis Hastings Algorithm


	5 Model of the Wing Geometry 
	5.1 CMM Geometry Measurements
	5.1.1 Measurement Procedure
	5.1.2 Transformation of the CMM Measurements
	5.1.3 Measurement Errors

	5.2 Photogrammetry Measurements
	5.2.1 Measurement Procedure
	5.2.2 Measurement Errors
	5.2.3 Mapping of the Photogrammetry Results

	5.3 Wing model
	5.3.1 Kriging profiles 
	5.3.2 Mean 2D Profile Distribution


	6 Uncertain Wing Geometry
	6.1 Free-Form Deformation
	6.1.1 Deformation Principles
	6.1.2 Determination of the Optimal FFD Control Points

	6.2 FFD Control Weight Distribution
	6.2.1 Classification of Profiles
	6.2.2 Least Squares Approach
	6.2.3 Least Squares Approximation Results

	6.3 Sensitivity Analysis

	7 Uncertain Experimental Parameters
	7.1 Determination of Input Uncertainties
	7.1.1 Angle of Attack
	7.1.2 Flap Deflection Angle
	7.1.3 Free Stream Velocity
	7.1.4 Gap Width

	7.2 Sensitivity Analysis
	7.2.1 Deterministic Code
	7.2.2 Sensitivity Derivatives


	8 Uncertainty Analysis
	8.1 Determination of Important Parameters
	8.2 Uncertainty Analysis Approach
	8.2.1 Probabilistic Collocation of XFOIL Computations
	8.2.2 Kriging on Tornado Computations
	8.2.3 Integration of PC and Kriging Surrogates
	8.2.4 Monte Carlo Integration

	8.3 Uncertainty Results 
	8.3.1 Uncertain Lift Coefficient
	8.3.2 Uncertain Moment Coefficient
	8.3.3 Discrepancies between Simulations and Observations

	8.4 Implications of the Uncertainty Results

	9 Calibrated Prediction
	9.1 Calibration Framework
	9.1.1 Statistical Model
	9.1.2 Posterior Distribution

	9.2 Calibration Approach
	9.2.1 Calibration Inputs
	9.2.2 Generation of Simulation Data
	9.2.3 Discrepancy Modeling
	9.2.4 Prior and Proposal Distributions
	9.2.5 McMC Simulation on the Posterior Distribution

	9.3 Calibration Results
	9.3.1 Features of the Log-likelihood Functions
	9.3.2 Estimates of the Calibration Parameters
	9.3.3 Calibrated Simulations

	9.4 Prediction of the Drag Coefficient

	10 Conclusions and Recommendations
	10.1 Conclusions
	10.2 Recommendations

	References

