Fair and Sparse Solutions in Network-Decentralized Flow Control

More Info
expand_more

Abstract

We proposed network-decentralized control strategies, in which each actuator can exclusively rely on local information, without knowing the network topology and the external input, ensuring that the flow asymptotically converges to the optimal one with respect to the p -norm. For 1 < p < ∞ , the flow converges to a unique constant optimal up∗. We show that the state converges to the optimal Lagrange multiplier of the optimization problem. Then, we consider networks where the flows are affected by unknown spontaneous dynamics and the buffers need to be driven exactly to a desired set-point. We propose a network-decentralized proportional-integral controller that achieves this goal along with asymptotic flow optimality; now it is the integral variable that converges to the optimal Lagrange multiplier. The extreme cases p=1 and p=∞ are of some interest since the former encourages sparsity of the solution while the latter promotes fairness. Unfortunately, for p=1 or p=∞ these strategies become discontinuous and lead to chattering of the flow, hence no optimality is achieved. We then show how to approximately achieve the goal as the limit for p 1 or p ∞.

Files

Fair_and_sparse_solutions_in_n... (.pdf)
(.pdf | 2.38 Mb)

Download not available

Fair_and_Sparse_Solutions_in_N... (.pdf)
(.pdf | 1.67 Mb)
- Embargo expired in 01-07-2023