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Preface
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in gas source modelling and learning methods.
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before this project. Since 2016, Guido has spent tremendous time helping me to become a better robotics

researcher, by spending many hours explaining me different concepts in computer vision and AI. Most im-

portantly, he has made me realize that I really love science and want to pursue a career in this direction.

Without him my career path probably would have looked much different. Other people in the MAVLab that

have helped tremendously over the years include (but is not limited to): Kimberly, Matej, Diana, Shushuai,

Freek, Erik, Kirk, Tom, Jesse, Julien, Christophe, Bart, Mario, Fede, Nilay, Ewoud and Sven. On a personal
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done it without them.

Bardienus Pieter Duisterhof
Delft, December 2020
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Sniffy Bug: A fully autonomous
and collaborative swarm of gas-seeking

nano quadcopters in cluttered environments

Bardienus P. Duisterhof1 Shushuai Li2 Javier Burgués3 Vijay Janapa Reddi2,3 Guido C.H.E. de Croon2

Abstract—Nano quadcopters are ideal for gas source localiza-
tion (GSL) as they are cheap, safe and agile. However, previous
algorithms are unsuitable for nano quadcopters, as they rely
on heavy sensors, require too large computational resources,
or only solve simple scenarios without obstacles. In this work,
we propose a novel bug algorithm named ‘Sniffy Bug’, that
allows a swarm of gas-seeking nano quadcopters to localize a gas
source in an unknown, cluttered and GPS-denied environment.
Sniffy Bug is capable of efficient GSL with extremely little
sensory input and computational resources, operating within the
strict resource constraints of a nano quadcopter. The algorithm
foresees in the avoidance of obstacles and other swarm members,
while pursuing desired waypoints. The waypoints are set for
exploration, and, when a single swarm member has sensed
the gas, by a particle swarm optimization-based procedure. We
evolve all the parameters of the bug (and PSO) algorithm,
with a novel automated end-to-end simulation and benchmark
platform, AutoGDM. This platform enables fully automated end-
to-end environment generation and gas dispersion modelling
(GDM), not only allowing for learning in simulation but also
providing the first GSL benchmark. We show that evolved Sniffy
Bug outperforms manually selected parameters in challenging,
cluttered environments in the real world. To this end, we show
that a lightweight and mapless bug algorithm can be evolved to
complete a complex task, and enable the first fully autonomous
swarm of collaborative gas-seeking nano quadcopters.

I. INTRODUCTION

Gas source localization (GSL) is an important application
for search and rescue, inspection, and other jobs that are too
dangerous or time-consuming for humans. Imagine cheap and
disposable aerial robots inspecting ship hauls for leaks, aiding
search for gas leaks in chemical plants, or quickly localizing
a dangerous gas leak in a building. For that reality, we need
small, agile, inexpensive and safe robots capable of complex
tasks in GPS-denied environments. Therefore, a swarm of nano
quadcopters is an ideal candidate for GSL.

To enable a gas-seeking swarm, the nano quadcopters need
to navigate in unknown, cluttered and GPS-denied environ-
ments by avoiding obstacles and each other. Currently, indoor
swarm navigation is still challenging and an active research
topic, even for larger quadcopters (> 500 grams) [10, 39].
State-of-the-art methods use heavy sensors like LiDAR and
high-resolution cameras to construct a map of the environ-
ment, while also estimating the robot’s position (e.g., Orb-
slam2 [27]). While robust, they require large computational
resources to construct and store maps of the environment,
making it impossible to run them onboard nano quadcopters.
The most promising solution for navigation of a swarm of nano
quadcopters has been obtained in [23], which introduced a
novel bug algorithm that allowed a swarm of nano quadcopters
to explore unknown environments and come back to the
starting location.

In addition to navigation in unknown environments, a swarm
of gas-seeking nano quadcopters needs a robust strategy to
efficiently locate the source, which by itself is already a highly
challenging task. A major factor contributing to this challenge
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Fig. 1. A fully autonomous and collaborative swarm of gas-seeking
nano quadcopters, seeking an alcohol source. The source is visible in the
background: a spinning fan above a can of alcohol.

is the currently available poor sensor quality compared to
animals’ smelling capabilities [2], and the dynamic nature of
the problem. As a result, most works focused on simple envi-
ronments without obstacle using a single robot [8, 3, 26, 34],
drastically lowering difficulty of navigation and gas seeking
(e.g., fewer local optima).

The currently available probabilistic GSL strategies [30, 33]
require too large computational resources and do not take
obstacles into account in their plume models. Bio-inspired
finite-state machines [20, 1, 9] have very low computational
requirements, but do not easily extend to a multi-agent setup
or more complex environments with obstacles [22]. Most
promising in this area is the use of particle swarm optimization
(PSO) for GSL, as it may be able to deal with the local optima
in gas concentration that arise in more complex environments.
Closest to our work is an implementation of PSO on a group
of large, outdoor flying quadcopters [32], using LiDAR and
GPS for navigation.

In this article, we introduce a novel PSO-powered bug algo-
rithm, Sniffy Bug, to tackle the problem of GSL in challeng-
ing, cluttered and GPS-denied environments. Our algorithm
makes the nano quadcopters collaborate in finding the source
by estimating relative positions using Ultra-Wideband (UWB),
and by communicating observed gas concentrations. In order
to optimize the parameters of Sniffy Bug with an artificial
evolution, we also develop and present the first fully automated
end-to-end environment generation, and gas dispersion mod-
elling (GDM) pipeline, which we term ‘AutoGDM’ (Figure 4).
Previous works use disparate and often simplified gas models,
making it hard to compare different algorithms. AutoGDM
allows for better comparison and learning in simulation, thus
forming a first GSL benchmark. We validate our approach,
and therefore AutoGDM, by robot demonstrations in cluttered
environments, showing evolved parameters outperform manual



parameters.
In summary, we contribute:

• The first robotic demonstration of a swarm of autonomous
nano quadcopters locating a gas source in GPS-denied
environments with obstacles.

• A novel, computationally highly efficient bug algorithm,
Sniffy Bug, of which the parameters are evolved for
swarm exploration and PSO-based gas source localization
in unknown, cluttered and GPS-denied environments.

• The first fully automated environment generation and
GDM pipeline, AutoGDM, which allows for benchmark-
ing of GSL algorithms.

In the remainder of this article, we review related work
(Section II), lay down our methodology (Section III), present
simulation and flight results (Section IV), and draw conclu-
sions (Section V).

II. RELATED WORK

Previous work in the area of GSL proposed novel algo-
rithms, contributed software tools for the community, and
presented new robot designs. We now review the state of the
art in these areas separately.

The existing algorithms for GSL generally belong to one or
more of the following categories: 1) bio-inspired algorithms,
2) probabilistic algorithms, 3) multi-agent algorithms, and 4)
learning-based algorithms. Bio-inspired algorithms draw inspi-
ration from organisms such as silkworm moths [20], E. coli
bacteria [1] or dung beetles [9]. The earliest GSL strategies
performed gradient-following for source localization, inspired
by small-scale animals that live in viscous environments.
For example, an E. coli-inspired algorithm [1] determines
its next heading based on chemical gradient only. Gradient-
based strategies fail in larger-scale environments [38] that
are typical of gas source localization in air, where wind and
turbulence can cause multiple local maxima in gas distribution.
For such environments, inspiration has been drawn from flying
insects, such as moths [20], as they do not just use chemical
measurements, but also wind-vector information. Even though
they perform relatively well, they are not designed for complex
multi-room environments and do not easily extend to a multi-
agent setup.

Probabilistic strategies were designed to be more robust in
turbulent conditions, though it remains unclear if that is true
in the real world [34]. Infotaxis [33] constructs a ‘belief map’,
keeping track of spatial probability of source presence, based
on a history of chemical and wind readings. It does so by
tracing back ‘peaks’ in concentration, based on local wind
and gas readings. After infotaxis was introduced in 2007, the
community quickly adopted it, introducing more probabilistic
methods and implementations on robots [8]. Source term
estimation (STE) [13] is a popular subset of probabilistic al-
gorithms, fitting measurements to a pre-defined model usually
employing some form of Bayesian inference. The primary
challenge for implementation on a nano quadcopter is the high
computational cost and memory requirement. Additionally,
probabilistic algorithms use simplified plume models, giving
poor predictions in complex environments. Probabilistic meth-
ods have not yet considered obstacles in their plume models,
which may reduce the accuracy of their predictions. It would
require a (partial) map of the environment, further increasing
complexity.

Multi-agent approaches are useful when deployed in emer-
gency response, as robustness and efficiency are key to mission
success. Bio-inspired algorithms can be deployed using multi-
ple robots. Especially the moth-inspired spiral-surge algorithm
has been studied in a multi-agent context, though its lack of

collaboration results in an inefficient strategy [22]. Formation-
based swarming [7] was attempted for GSL, leveraging the
gradient between agents in a formation, adding attraction
towards agents sensing higher concentrations. A downside of
formation swarming is its suboptimal exploration (i.e., agents
stay together), making it unlikely to be effective in larger and
more complex environments.

Particle swarm optimization (PSO) [18] represents a promis-
ing algorithm for locating gas sources in complex environ-
ments, as it is a population-based optimization algorithm that
can deal, to a certain extent, with local optima. Its property of a
heuristic search method (requiring only a value and no gradient
measurement) and its population-based nature make it a good
fit for swarm-based GSL. In fact, it was deployed onboard a
swarm of large gas-seeking quadcopters in [32], using LiDAR
to avoid obstacles and GPS for positioning. We extend on this
work, by deploying a novel bug algorithm, inspired by [23],
that allows for autonomous and collaborative GSL on nano
quadcopters in complex, cluttered, GPS-denied environments.

Learning-based strategies have been attempted for GSL, but
the work in this direction is relatively sparse. Reinforcement
and evolutionary learning approaches have been first attempted
in [4, 19], and later in [14, 15, 11, 35]. The results in
simulation look very promising, but real-world testing was
limited to very small areas (< 1 × 1 m) without obstacles [19].
We contribute the first transfer of a learning-based approach
to GSL, from simulation to a swarm of nano quadcopters in
challenging environments in the real world.

To allow for successful deployment of learning-based so-
lutions in the real world, we need to train agents on a large
number of environments with varying conditions and config-
urations. So far, gas dispersion modelling has been a time-
intensive process, requiring domain knowledge for accurate
modelling. As a consequence, most studies on GSL are based
on a single or only a few environments with gas distributions
over time [36]. Moreover, to the best of our knowledge, only
very limited environments have been made available to the
public [25]. We believe that the field would be helped sub-
stantially by a fully automated environment generation and gas
distribution modelling pipeline that is able to generate a large
number of environments that vary in complexity, both in terms
of the obstacles in the environment and the gas flow field. The
GADEN ROS package [25] is a great contribution, automating
filament simulation, but it lacks automation of environment
generation, computational fluid dynamics (CFD), and source
placement. We build on GADEN to propose AutoGDM, a fully
automated GDM pipeline that does not only allow for training
GSL agents, but also forms a first GSL benchmark.

Finally, from a hardware perspective, GSL is usually carried
out on ground robots [8, 5], with most works in the hardware
space focusing on improved sensing. Artificial gas sensors
are highly constrained, leading researchers to design bio-
hybrid systems using insect antennae [2, 29]. GSL onboard
a nano quadcopter has been attempted before [6, 28, 2], but
always with a single robot relying on a ground station. Fully
autonomous flight of a gas-seeking nano quadcopter has not
yet been achieved, due to the very strict resource constraints.
We present the first fully autonomous and collaborative swarm
of gas-seeking nano quadcopters, by a custom PCB for gas
seeking and relative localization.

III. METHOD

We present our application-specific systems design (Sec-
tion III-A), including a custom gas and relative localiza-
tion deck. Next, we describe our novel bug algorithm (Sec-
tion III-B), capable of fully autonomous GSL, while collab-
orating with other agents. Finally, we lay down our fully



Fig. 2. A 37.5 g nano quadcopter, capable of fully autonomous waypoint
tracking, obstacle avoidance, relative localization, communication and gas
sensing.

automated GDM pipeline, AutoGDM (Section III-C), which
we use to evolve our controller (Section III-D).

A. System Design

Our 37.5 g nano quadcopter (Figure 2), is equipped with
sensors to allow for waypoint tracking, obstacle avoidance,
relative localization, communication and gas sensing. For
waypoint tracking, we use the BitCraze Flow deck and IMU
sensors, to estimate the drone’s state and track waypoints in the
body frame. Additionally, we deploy the BitCraze multiranger
deck, carrying four laser range sensors in the drones positive
and negative x and y axis, to sense and avoid obstacles.

Finally, we design and open-source a custom PCB, capable
of gas sensing and relative localization. We use a Figaro
TGS8100 MEMS gas sensor, which is lightweight, cheap, and
was previously deployed onboard a nano quadcopter [6]. We
use it so seek alcohol, but it can be used with many other
substances, such as carbon monoxide. The TGS8100 changes
resistance based on exposure to gas, which can be computed
according to Equation 1.

Rs =

(

Vc

VRL

− 1

)

·RL (1)

Here Rs is the sensor resistance, Vc circuit voltage (3.0V),
VRL the voltage drop over the load resistor in a voltage divider,
and RL is the load resistor’s resistance. Since different sensors
can have different offsets in the sensor reading, we have
designed our algorithm not to need absolute measurements
like a concentration in ppm. From now on, we report a
corrected version of VRL, where higher means more gas. VRL

is corrected by its initial (low-passed) reading, without any
gas present, in order to correct sensor-specific bias.

For relative localization, we use a Decawave DWM1000
UWB module to sense relative range between agents. An
extended Kalman filter (EKF) uses onboard sensing from all
agents, measuring velocity, yaw rate, and height, which is
fused with the observed ranges from the UWB module. It
does so without relying on any external systems or magne-
tometers, which are known to drift [37], especially at this
scale. Additionally, all agents are programmed to maintain
constant yaw, as it further improves the stability and accuracy
of the estimates. For a more in-depth description of the relative
ranging pipeline, the reader is invited to consult [21] that
proposes the above-mentioned methodology.

B. Algorithm Design

We design an algorithm that is capable of GSL using
extremely little resources, both from a computational and

sensor perspective. We generate waypoints in the reference
frame of each agent using particle swarm optimization (PSO),
based on the relative positions and gas readings of all agents.
The reference frame of the agent is initialized just before
takeoff, and is maintained using dead reckoning by fusing
data from the IMU and optic flow sensors. While the reference
frame does drift over time, only the drift since the last seen
‘best waypoint’ in PSO will be relevant, as it will be saved in
the drifted frame.

The waypoints are tracked using a bug algorithm that
follows walls and other objects, moving safely around them.
Each agent computes a new waypoint if it reaches within dwp

of its previous goal, if the last update was more than twp

seconds ago, or when one of the agents smells a concentration
superior to what has been seen by any agent during the
run, and higher than the pre-defined detection threshold. A
detection threshold is in place to avoid reacting based on
sensor drift and bias. A timeout time, twp, is necessary, as the
predicted waypoint may be unreachable (e.g., inside a closed
room). We term each new waypoint, generated if one of the
above criteria is met, a ‘waypoint iteration’ (e.g., waypoint
iteration five is the fifth waypoint generated during that run).

1) Waypoint generation: Each agent computes its next
waypoint according to Equation 2.

gi,j = xi,j + vi,j (2)

Here gi,j is the goal waypoint of agent i, in iteration j,
xi,j its position when generating the waypoint, and vi,j its
‘velocity vector’. The velocity vector is determined using PSO,
which is configured in either of two modes: ‘exploring’, or
‘seeking’. ‘Exploring’ is activated when none of the agents
has smelled gas, while ‘seeking’ is activated when an agent
has detected gas. During exploration, Equation 3 describes
computation of vi,j .

vi,j = ω′(gi,j−1 − xi,j) + rr (ri,j − xi,j) (3)

Here vi,j is the velocity vector of agent i in iteration j,
gi,j−1 the goal computed in the previous iteration and ri,j
a random point within a square of size rrand around the
agent’s current position. A new random point is generated
each iteration. Finally, ω′ and rr are scalars that impact the
behavior of the agent. gi,j and vi,j are initialized randomly in
a square of size rrand around the agent. Intuitively, Equation 3
shows the new velocity vector is a weighted sum of: 1) a
vector toward the previously computed goal (also referred to as
inertia), and 2) a vector towards a random point. After smelling
gas, i.e., one of the agents detects a concentration above a
pre-defined threshold, we update the waypoints according to
Equation 4.

vi,j = ω(gi,j−1 − xi,y) + ϕpαi,j (pi,j − xi,j)+

ϕgβi,j (sj − xi,j)
(4)

Here pi,j is the waypoint at which agent i has seen its highest
concentration so far, up to iteration j. sj is the swarm’s best
seen waypoint, up to iteration j. αi,j and βi,j are random
values between 0 and 1, generated for each waypoint iteration
for each agent. Finally, ϕp and ϕg are scalars that impact
the behavior of the agent. So again, more intuitively, the
vector towards the next waypoint is a weighted sum of the
vectors towards its previously computed waypoint, the best
seen position by the agent, and the best seen position by the
swarm. As we will see later, this allows the swarm to converge
to high concentrations of gas, whilst still exploring.
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Fig. 3. Sniffy Bug’s three states: line following, wall following, and attraction-repulsion swarming.

2) Waypoint tracking: Tracking these waypoints is chal-
lenging, considering that our robots only have access to limited
sensing and computational resources. Sniffy Bug is designed to
operate at constant yaw, and consists of three states (Figure 3):
1) Line Following, 2) Wall Following, and 3) Attraction-
Repulsion Swarming.

Line Following – When no obstacles are present, the agent
follows a virtual line towards the goal waypoint, making sure
to only move in directions where it can ‘see’ using a laser
ranger, improving safety. The agent makes sure to stay within
a distance dline from the line, creating a motion as shown in
Figure 3.

Wall Following – When the agent detects an obstacle, and
no other agents are close, it will follow the object similar
to other bug algorithms [24]. The wall following stage is
visible in Figure 3, and laid down in detail in Algorithm 1,
Appendix A. It is terminated if one of the following criteria is
met: 1) a new waypoint has been generated, 2) the agent has
avoided the obstacle, or 3) another agent is close. In case 1
and 2 line following is selected, whereas in case 3 attraction-
repulsion swarming is activated.

During wall following Sniffy Bug outputs ‘local laser’, an
integer between 0 and 3, indicating if the robot will move in
one of four directions in the body frame (+x,+y,−x,−y,
ENU, respectively). We use Figure 3 as an example to explain
wall following in Sniffy Bug.

The agent starts by computing desired laser, which is the
laser direction that points most directly to the goal waypoint,
laser 3 in this case. It then determines the initial search
direction in the direction of the waypoint, anti-clockwise in
this case. The agent now starts looking for laser rangers
detecting a safe value (below dlaser), starting from lasers 3, in
the anti-clockwise direction. As a result, we follow the wall in
a chainsaw pattern, alternating between lasers 3 and 0. Next,
the agent detects it has avoided the obstacle, by exiting and
re-entering the green zone, while it has gotten closer to the
goal waypoint (as determined with odometry).

The example shown is a simple case, but Sniffy Bug
is capable of avoiding more complex objects too. It will
keep increasing local laser until it finds a safe direction.
To avoid oscillations, we only consider directions from
max reached laser − 1 for anti-clockwise searching, and
max reached laser + 1 for clockwise searching. This con-
straint is only imposed if the agent has considered directions
beyond desired laser. In Figure 3 this means if the agent has
travelled in the direction of laser 2, it will only consider laser
1 and 2. If those two lasers both see a value below d laser,
the wall follower is reset. This means we start looking from
desired laser again, but now clockwise. Using this strategy,
Sniffy Bug can move around larger obstacles with complex
shapes in cluttered environments.

Attraction-Repulsion Swarming – When the agent detects

at least one other agent within a distance dswarm, it uses
attraction-repulsion swarming to avoid other agents and ob-
jects, while tracking its goal waypoint. This state is terminated
when none of the other agents is within d swarm, selecting
‘line following’ instead.

As can be seen in Figure 3 and Equations 5,6, the final
commanded velocity vector is a sum of repulsive forces away
from low laser readings and close agents, while exerting an
attractive force to the goal waypoint.

Ai,j =

#agents
∑

k=0

kswarm · Relu (dswarm − ‖xi,j − xk,j‖) ·
xi,j − xk,j

‖xi,j − xk,j‖

+

3
∑

k=0

klaser · Relu
(

d
′

laser − lk
)

· R

(

k + 2

2
π

)

· i

+
gi,j − xi,j

‖gi,j − xi,j‖
· Vdesired

(5)

In Equation 5, Ai,j is the attraction vector of agent i in
time step (so not iteration) j, specifying the direction the
agent will move towards. Each time step the agent receives
new estimates and re-computes Ai,j . The first term results in
repulsion away from other agents that are closer than dswarm,
while the second term adds repulsion from laser rangers seeing
a value lower than d′laser, and the third term adds attraction
to the goal waypoint. The repulsive terms increase linear with
distance, allowing it to manage multiple repulsive forces, like
multiple agents passing close to a wall and each other.

kswarm is the swarm repulsion gain, and dswarm is the
threshold to start avoiding agents. xk,j is the position of agent
k, at time step j, in the reference frame of agent i. xi,j is agent
i’s own position at time step j, in its own reference frame. The
rectified linear unit (Relu) makes sure only close agents are
repulsed.

In the second term, klaser is the laser repulsion gain, and
d′laser is the threshold to start repulsing a laser. lk is the read
of laser k, numbered according to Figure 3. Relu makes sure
only lasers recording values lower than d′laser are repulsed.
R(·) is the rotation matrix, used to rotate i in the direction
away from laser k, such that the second term adds repulsion
away from low lasers.

Finally, the third and final term adds attraction from the
agent’s current position xi,j to the goal gi,j , which is the goal
waypoint agent i is tracking in time step j. This term is scaled
to be of size Vdesired.

As a last step, we normalize Ai,j to have size Vdesired too,
using Equation 6.

Vcommand =
Aij

‖Aij‖
· Vdesired (6)

Here Vcommand is the velocity vector we command to
the low-level control loops. Commanding a constant velocity
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Fig. 4. AutoGDM, a fully automated environment generation and gas
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vector size prevents deadlocks in which the drones hover in
place. Moreover, it prevents peaks in velocity that increase the
probability of collisions.

C. AutoGDM

In a future with effective deployment of nano quadcopters,
their behavior needs to be robust in a variety of conditions,
making it possible to instantly deploy them in an unknown
environment. In the case of GSL, this means our swarm needs
to be evaluated in different flow conditions and environment
settings, as both have great impact on task difficulty and
optimal strategy. Usually manually tuning the hyperparameters
of bug algorithms is a time-intensive yet critical task, almost
certainly yielding a non-optimal controller. Instead, we evolve
the parameters of our algorithm to reach optimal behavior in
100 randomly generated environments, by dispersing gas in
virtual environments.

Gas dispersion modelling (GDM) has so far been a compli-
cated and time-intensive task, that requires domain knowledge
for accurate modelling. The GADEN ROS package [25]
provides a useful tool for dispersion modelling, but does
not automate the CFD-based flow field generation, source
placement and environment generation. Manually creating a
large number of environments is impractical, whereas a fully
automated pipeline will create environments more effortlessly
and consistently.

While many efforts towards more efficient GDM exist, most
scientists agree that modelling based on computational fluid
dynamics (CFD), is most accurate. We first model a flow field
using CFD, which we then use to disperse gas ‘filaments’.
Hence, fully automated CFD-based GDM requires three main
steps, being: 1) environment generation, 2) CFD, and 3)
Filament simulation. We now discuss the different building
blocks of AutoGDM separately.

1) Environment Generation: We use the procedural envi-
ronment generator described in [24], that can generate environ-
ments of any desired size with a number of requested rooms.
Additionally, AutoGDM allows users to insert their own 2D
binary occupancy images, making it possible to model any
desired 2.5D environment by extruding the 2D image.

2) CFD: CFD consists of two main stages: 1) meshing,
and 2) solving (i.e., flow field generation). We use Open-
FOAM [17], an open-source CFD toolbox, to complete both
stages.

To feed the generated environments into OpenFOAM, the
binary occupancy maps are converted into 3D triangulated
surface geometries of the flow volume. We use OpenCV to
detect the largest volume in the image, and declare it as
our flow volume and test area. We first create a background
mesh of hexahedral cells that fills the entire volume, using
OpenFOAM blockMesh. We then use snappyHexMesh to
complete the mesh, creating more cells in close proximity to
edges where higher gradients of flow velocities are expected.

Next, we need to define the boundary conditions, i.e., wall,
inlet and outlet. Out of the n largest vertical surfaces, we
randomly choose two surfaces that will be defined as inlet
and outlet, while all other surfaces are defined as wall. n is a
user-defined integer.

Finally, we use pimpleFOAM to solve for kinematic pres-
sure, p, and the velocity vector, U .

3) Filament simulation: In the final stage of AutoGDM,
we use the GADEN ROS package [25] to model a gas source
based on filament dispersion theory. It releases filaments that
expand over time, and disappear when they find their way to
the outlet. The expansion of the filaments and the dispersion
rate of the source (i.e., filaments dispersed per second), is
random within a user-defined range.

D. Evolutionary Optimization

We feed the generated gas data into Swarmulator1, a
lightweight C++ simulator for simulating swarms. The agent
is modelled as a point mass, that is velocity-controlled using
a P controller. We describe both the environment and laser
rays as a set of lines, making it extremely fast to model
laser rangers, as compared to ray-tracing. An agent is deemed
crashed when one of its laser rangers reads less than 0.1m or
when another agent is closer than 0.5m. The agents are fed
with gas data directly from AutoGDM, which is updated every
1.0 s in simulation time.

Swarmulator spawns several threads on the CPU in parallel,
evaluating multiple environments and agents concurrently,
accelerating evolution. We serialize all gas data into a gas class
before starting experiments, making it possible to efficiently
load gas data for each environment. Compared to using the
txt files generated by GADEN, our approach delivers an
additional 6× performance improvement for each evaluation.

Using this simulation environment, we evolve the parame-
ters of Sniffy Bug with the ‘simple genetic algorithm’ from the
open-source PyGMO/PAGMO package [16]. The population
consists of 50 individuals and is evolved for 400 generations.
Selection is done through a tournament selection strategy,
mating through exponential crossover and mutation using a
polynomial mutation operator. The mutation probability is 0.1,
while the crossover probability is 0.9. The genome consists of
13 different variables, as shown in Table I, including their
ranges set during evolution. Parameters that have a physical
meaning when negative are allowed to be negative, while
variables such as time and distance need to be positive. The
evolved parameters will be further discussed in Section IV.

For each agent, its cost is defined as its average distance to
source added by a penalty (+ 1.0) in the event of a collision.
Even without a penalty the agents will learn to avoid obstacles
to some capacity, though a penalty will force the agent to
be more careful. Other quality metrics like ‘time to source’
were also considered, but we found average distance to work
best and to be most objective. Average distance to source will
lead to finding the most direct paths to the source, and then
stay close to the source. This could be useful in emergency

1https://github.com/coppolam/swarmulator



Variable Manually Selected Evolved Evolution range
ω 0.5 0.271 [-5,5]
ϕp 0.8 -0.333 [-5,5]
ϕg 2.0 1.856 [-5,5]
ω′ 0.3 1.571 [-5,5]
rr 0.7 2.034 [0,5]
twp 10.0 51.979 [0,100]
dwp 0.5 2.690 [0,5]
dlaser 1.5 1.407 [0,5]
dswarm 1.5 0.782 [0,5]
dline 0.2 0.469 [0,1]
klaser 5.0 16.167 [0,20]
kswarm 15.0 10.032 [0,20]
d′
laser

1.5 0.594 [0,5]

TABLE I
PARAMETERS EVOLVED IN EVOLUTION USING DOPING, CONSULT

SECTION III-B FOR THE MEANING OF THE VARIABLES.

response, when a human comes in and immediately sees
multiple drones hover close to a peak in gas concentration.

In each generation, we select n environments out of the
total of m environments generated using AutoGDM. As
considerable heterogeneity exists between environments, we
may end up with a controller that is only able to solve easy
environments. This is known as the problem of hard instances.
To tackle this problem, we study the effect of ‘doping’ [31] on
performance in simulation. When using doping, the probability
of environment number i to be selected in each draw is
described by Equation 7.

P (i) =
D(i)

∑m

k=0 D(k)
(7)

D(i) is the ‘difficulty’ of environment i, computed based
on previous experience with environment i. If environment i
is selected to be evaluated, we save the median of all 50 costs
in the population. We use median instead of mean to avoid
a small number of poor-performing agents to have a large
impact. D(i) is the mean of the last three recorded medians.
If no history is present, D(i) is the average of all difficulties
of all environments.

Probability P (i) is defined as the difficulty of environment
i, divided by the sum of all difficulties:

∑m

k=0 D(k). This
means that we start with an even distribution, but over time
give environments with greater difficulty a higher chance to be
selected in each draw. When not using doping, we set P (i) =
1
m

, resulting in a uniform distribution.

IV. RESULTS

In this section, we evaluate simulation and flight results
of our swarm. We evaluate training results (Section IV-A),
evaluate the models in simulation (Section IV-B), and flight
tests (Section IV-C).

A. Training in Simulation

To evolve our agents, we use AutoGDM to randomly
generate 100 environments of 10 × 10 m in size, the size
of our experimental arena. We use 3 agents, with Vdesired =
0.5m/s. Not only the environment configurations, but also the
boundary conditions are randomized, arriving at varying gas
dispersion conditions. Figure 5 shows two randomly generated
environments. The left environment contains few obstruc-
tions and shows a stable and diffusion-dominated gas source,
whereas the right environment is less stable and contains more
local optima. By evolving Sniffy Bug on a heterogeneous set
of environments, we arrive at a set of parameters that works
in different gas and environment configurations.

During each generation, every genome is evaluated on a
random set of 10 out of the total 100 environments, with
a maximum duration per run of 100 s, to reduce the com-
putational cost. The evaluations are done in parallel on an
Intel(R) Core(TM) i7-7700 CPU, and all headings and starting
positions are randomized after each generation. Agents are
spawned in some part of the area so that some path exists
towards the gas source, and they do not get spawned inside a
closed room.

We assess training results for training using doping. Figure 6
shows the progress of the cost function during training. Table I
shows the parameters resulting from evolution in comparison
with the manually designed parameters. rrange is set to 10m,
creating random waypoints in a box of 10m in size around
the agent during ‘exploring’. This box is scaled by evolved
parameter rr (Equation 3).

When generating new waypoints, the agent has learned to
move strongly towards the swarm’s best-seen position sj , to
move away from its personal best-seen position pi,j , and move
towards its previously computed goal gi,j−1. We expect this
to be best in the environments encountered in evolution, as
in most cases only one optimal position (with the highest
concentration) exists. Hence, it does not need its personal
best position to avoid converging to local optima. ω adds
‘momentum’ to the waypoints generated, increasing stability.

dswarm shows that attraction-repulsion swarming is engaged
only when any other agent is within 0.782m. This is substan-
tially lower than the manual number of 1.5m, which can be
explained by a lower cost function when agents stay close to
each other when they found the source. It also makes it easier
to pass through narrow passages, but could increase the risk
of collision when agents are close to each other for extended
periods of time.

dwp should also be highlighted, as 2.69m is much higher
than our manual choice. Instead of using the timeout to
generate new waypoints, the evolved version of Sniffy Bug
uses PSO to determine the desired direction to follow, until it
has travelled far enough in the desired direction and generates
a new waypoint. It looks like it has practically disabled
the timer (twp = 51.979) in favor of following the desired
direction, instead of waypoints that can be reached.

From an obstacle avoidance point of view, we see the
manual parameters are more conservative as compared to the
evolved counterparts. Being less conservative allows the agents
to get closer to the source quicker, at the cost of an increased
risk of collision. This is an interesting trade-off: if we deploy
larger swarms in the real world (i.e., > 10 agents), how safe
do they need to be? Or is the extra risk worth more efficient
localization? The trade-off can be shifted by introducing a
higher penalty in the cost function.

After training, the probability for each environment in each
draw can be evaluated as a measure of difficulty. Figure 16
shows a histogram of all 100 probabilities along with some
environments on the spectrum. Generally, more cluttered en-
vironments with more local minima result in a higher D(i)
and P (i), thus are perceived as more difficult.

B. Evaluation in Simulation

Next, we evaluate the models separately in simulation on
test environments. Figures 7 and 8 show runs in simulation
of the manual and evolved version with doping respectively,
starting for the same positions with the same headings and in
the same conditions.

Our hypothesis stated in Section IV-A is fortified by sim-
ulation experiments: the evolved policy shows more direct
paths by, among other things, being less conservative. Both
algorithms find the source, though the evolved counterpart



Fig. 5. Gas dispersed in two
randomly generated environ-
ments.
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Fig. 6. Training progress while using doping.
Cost is defined as average distance to the
source, added by a small collision penalty.

Fig. 7. Sniffy Bug using manual
parameters, successfully locating the
source.

Fig. 8. Sniffy Bug using param-
eters that are evolved using doping,
successfully finding the source using
more direct paths.

finds it quicker and stays closer to the source. Evolved Sniffy
Bug allows the agents to get closer to each other, resulting in
a final position very close to the source.

To further analyse performance, and assess the effect of
doping, we evaluate all three controllers in all 100 environ-
ments, and record different quality metrics: 1) success rate,
2) average distance to source, and 3) average time to source.
Success rate is defined as the fraction of runs during which at
least one of the agents reaches within 1.5m from the source,
whereas average time to source is the average time it takes an
agent to reach within 1.5m from the source. For agents not
reaching the source, 100 s is taken as time to source.

Table II shows that the evolved parameters without doping
find the source quicker, and with a smaller average distance

Success Rate
Avg Distance
to Source [m]

Avg time
to source [s]

Manual Parameters 89 % 3.29 51.1
Evolved without Doping 85 % 2.90 47.1
Evolved with Doping 93 % 2.73 39.2

TABLE II
SNIFFY BUG EVALUATED ON 100 RANDOMLY GENERATED

ENVIRONMENTS.
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Fig. 9. Three sets of parameters evaluated in simulation: 1) manually set
parameters, 2) parameters evolved without doping, and 3) parameters evolved
using doping [31] to address the hard instance problem.

to source, compared to the manual parameters. However, its
success rate is inferior to the manual parameters. This is
caused by the hard instance problem [31]: the parameters are
optimized to perform best on average rather than to perform
well in all cases.

On the other hand, the parameters that are evolved with dop-
ing outperform the other two controllers in all metrics. Doping
helps to tackle harder environments, improving success rate
and thereby average distance to source and time to source.
This effect is further exemplified by Figure 9. The doping
controller does not only result in a lower average distance to
source, it also shows a much smaller spread. Doping managed
to eliminate the long tail that is present in the set of evolved
parameters, as shown in Figure 9.

As we test on a finite set of environments, and the as-
sumptions of normality may not hold, we use the empirical
bootstrap [12] to compare the means of the average distance
to source. Using 100,000 bootstrap iterations, we find that
only when comparing the manual parameters with evolved
parameters with doping, the null hypothesis can be rejected,
with P = 0.0062. From these simulation results, it looks like
doping is required to arrive at parameters that are significantly
better than manual parameters.

C. Flight Tests

Finally, we transfer the evolved solution to the real world,
validating our methodology. We deploy our swarm in four
different environments of 10 × 10 m in size, as shown in
Figure 10. We place a small can of alcohol with a 5V computer
fan within the room, which the swarm will attempt to locate.
We compare manual parameters against the parameters that
are evolved using doping, by comparing their recorded gas
readings. Each set of parameters is evaluated three times for
each environment, resulting in a total of 24 runs. A run is
terminated when: 1) the swarm is stationary and close to
the source, or 2) at least two members of the swarm crash.
Each run lasts at least 120 s. Figure 11 corresponds to the run
depicted in Figure 10a, Figures 13-15 show example runs of
Environments 2-4.

Figure 12 shows the maximum recorded gas concentration
by the swarm, for each time step for each run. Especially
for environment 1, it clearly shows the more efficient source
seeking behavior of our evolved controller. Table III shows
the average and maximum observed concentrations by the
swarm, averaged over all three runs per environment. It shows
that for environments with obstacles, our evolved controller
outperforms the manual controller in average observed gas
readings and average maximum observed gas readings.

The evolved controller was able to reach the source within
±2.0m in 11 out of 12 runs, with one failed run due to
converging towards a local optimum in environment 4 (pos-
sibly due to sensor drift). The manual parameters failed once
in environment 2 and once in environment 3. The manual
parameters were less safe around obstacles, recording a total
of 3 crashes in environments 1 and 2. The evolved parameters
recorded only one obstacle crash in all runs (environment
2), likely thanks to it spending less time around dangerous
obstacles, thanks to more efficient GSL.

On the other hand, the evolved parameters recorded 2
crashes, both in environment 4, when the agents were really
close to each other and the source for extended periods of time.
The manual parameters result in more distance between agents,
making it more robust against downwash and momentarily
poor relative position estimates. This can be avoided in future
work by a higher penalty for collisions during evolution, or
classifying a run as a crash when agents are, for instance,
0.8m away from each other instead of 0.5m.



(a) Environment 1: the agents need to
explore the ‘room’ in the corner to
smell the gas.

(b) Environment 2: the agents need to
go around a long wall to locate the
source.

(c) Environment 3: an easier environ-
ment with some obstacles.

(d) Environment 4: an empty environ-
ment.

Fig. 10. Sniffy Bug evaluated on four distinct environments, 10 × 10 m in
size, seeking a real alcohol source.
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Fig. 11. Evolved Sniffy Bug seeking an alcohol gas source in environment
1. After agent 3 finds the source, all three agents quickly find their way to
higher concentrations.

The results show that AutoGDM can be used to evolve
a controller that works in the real world in challenging
conditions. While GADEN [25] and OpenFOAM [17] were
validated, our approach of randomization of source position
and boundary condition had not yet been validated. Addi-
tionally, the results show that the simple particle motion
model and sensor model (i.e., feeding concentrations straight
from AutoGDM) are sufficient to evolve a controller that
works in the real world. We demonstrate that fully automated
randomization of the environment, source position and bound-
ary conditions, results in a high-performance solution that

Manual Evolved
Avg ± std Max ± std Avg ± std Max ± std

Env 1 0.250 ± 0.036 0.406 ± 0.049 0.330 ± 0.046 0.566 ± 0.069
Env 2 0.162 ± 0.055 0.214 ± 0.070 0.165 ± 0.046 0.237 ± 0.063
Env 3 0.200 ± 0.074 0.300 ± 0.103 0.258 ± 0.045 0.412 ± 0.029
Env 4 0.240 ± 0.123 0.398 ± 0.143 0.176 ± 0.062 0.349 ± 0.151

TABLE III
MANUAL PARAMETERS AND PARAMETERS EVOLVED WITH DOPING

COMPARED IN 24 FLIGHT TESTS. SHOWN ARE THE AVERAGE AND

MAXIMUM SMELLED CONCENTRATION BY THE SWARM, AVERAGED FOR

THE THREE RUNS FOR EACH ENVIRONMENT.
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Fig. 12. Maximum recorded gas reading by the swarm, for each time step
for each run.

outperforms manual parameters in the real world. Hereby, we
demonstrate zero-shot sim2real transfer for GSL, contributing
the first controller for GSL that was evolved in a simulator
and tested in challenging real-world environments.

V. CONCLUSION AND DISCUSSION

We show that a novel and minimal bug algorithm, Sniffy
Bug, resulted in the first fully autonomous swarm of gas-
seeking nano quadcopters. We evolve the parameters of this
algorithm, which covers both obstacle avoidance and nav-
igation. It outperforms a human-designed controller in all
metrics in simulation and corresponding robot experiments.
With this, we contribute the first transfer of a learning-based
GSL solution from simulation to a swarm of nano quadcopters,
demonstrating zero-shot sim2real transfer.

Furthermore, we contribute the first fully automated GDM
pipeline, AutoGDM, that does not only allow for learning in
simulation, but is also useful in benchmarks. Most previous
works use disparate and simplified models, making compari-
son virtually impossible. Not only will AutoGDM help arrive
at robust algorithms that work in challenging environments, it
also serves as a platform to better understand the performance
of existing contributions. A set of benchmark environments
will soon be available in a public repository2.

In future work, we hope to see our methodology tested
in larger and more complex real-world environments, with
multiple rooms and complex obstacles. PSO was designed
to work in large optimization problems with many local
optima, making it likely that our methodology extends to more
complex configurations. Even more, AutoGDM may be used
to enable reinforcement learning for GSL, by training a policy
in simulation with AutoGDM that can be deployed in the real
world. In this study, we have opted for a FSM, that effectively
reduces the sim2real gap by tracking waypoints with PSO.
An end-to-end learning approach with appropriate input may
outperform our method.

Nonetheless, we are convinced that this work is an important
step in the right direction. Insects use simple strategies to solve
complex problems and survive in nature. We show how a
simple algorithm and application-specific system design can
be used to solve the complex multi-agent GSL problem.

2https://github.com/tudelft/sniffy bug



APPENDIX A
ADDITIONAL ALGORITHM

Algorithm 1: Sniffy Bug Wall Following

// determine desired laser and search direction (see Figure 3)
desired laser = determine desired laser(WP Heading);
search clockwise = determine direction(desired laser,WP Heading);

// initialize wall following variable
max reached laser = desired laser;

// initialize for avoided obs detection
exited green zone = false ;
init dist = get distance(current pos,goal wp) ;
wp line = get line(current pos,goal wp) ;
avoided obs = false ;

while Wall Following do
get laser readings(lasers);

if get distance to line(wp line,current pos) > d line then
exited green zone = true ;

else
if exited green zone == true and

get distance(current pos,goal wp) < init dist then
avoided obs = true ;

end
end

if search clockwise then
for (i=desired_laser; i>(desired_laser-4);
i--) do

if i < max reached laser then
max reached laser = i ;

end
if i ≤ (max reached laser + 1) then

// bounding local laser between 0 and 3
local laser = cap laser(i);
if lasers[local laser] > dlaser then

break;
end

end
end
if lasers[local laser] < dlaser then

search clockwise = false ;
max reached laser = desired laser;

end
else

for (i=desired_laser; i<(desired_laser+4);
i++) do

if i > max reached laser then
max reached laser = i ;

end
if i ≥ (max reached laser - 1) then

// bounding local laser between 0 and 3
local laser = cap laser(i);
if lasers[local laser] > dlaser then

break;
end

end
end
if lasers[local laser] < dlaser then

search clockwise = true ;
max reached laser = desired laser;

end
end
if new wp received or agent close or avoided obs then

Wall Following = false;
else

fly(local laser);
end

end

APPENDIX B
ADDITIONAL FIGURES
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Fig. 13. Evolved Sniffy Bug seeking an alcohol gas source in environment
2. After agent 2 finds the source, all three agents quickly find their way to
higher concentrations.
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Fig. 14. Evolved Sniffy Bug seeking an alcohol gas source in environment
3. After agent 1 finds the source, all three agents quickly find their way to
higher concentrations.
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Fig. 15. Evolved Sniffy Bug seeking an alcohol gas source in environment
4. After agent 3 finds the source, all three agents quickly find their way to
higher concentrations.

Fig. 16. Doping probabilities, showing the distribution of computed prob-
abilities for each environment at the end of evolution (generation 400). The
environments below the x-axis show that harder environments contain more
obstacles and local optima.
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1
Introduction

Gas source localization (GSL) is a highly sought-after feature in the field of robotics, as it has the
potential to defer risk away from humans in presence of gas leaks. GSL is defined as localizing a gas
source by one or more mobile robots, generally by gas sensors, as most gases are invisible to cameras.
The ideal gas-seeking robot is agile, small and cheap, for effective deployment. A nano drone might
be the perfect candidate, but its resource constraints have so far resulted in limited success. This
study reviews literature on the topic of gas seeking, to identify the key challenges to enable a swarm
of gas-seeking nano drones. The existing literature can be roughly divided into four categories, being:
1) single-agent algorithms, 2) multi-agent algorithms, 3) reinforcement learning and 4) gas modelling.

Single agent algorithms are classified as either bio-inspired, probabilistic or gas distribution map-
ping (GDM). Bio-inspired algorithms draw inspiration from organisms such as silkworm moths [60], E.
coli bacteria [1] or dung beetles [16]. These algorithms can be divided into three stages: 1) plume
acquisition, 2) reactive plume tracking, and 3) source declaration. Only a small subset of algorithms
solves all three stages. The plume acquisition stage can be completed by a random walker [3], drawing
actions from a Poisson distribution. Other options include scanning patterns with fixed orientation with
respect to the wind vector, such as a linear search [16].

For reactive plume tracking, algorithms heavily relying on chemical gradient are generally less sta-
ble but more efficient in stable diffusion-like conditions [140]. The E. coli [1] inspired algorithm is an
example of a strategy with heavy reliance on gradient, as it determines its next heading based on
chemical gradient only. The more successful moth-inspired algorithms [60] do not just use chemi-
cal measurements, but also wind-vector information. They are inspired from the strategy a male moth
deploys to mate, as the female disperses odours. Comparative studies [74, 75] have shown that surge-
cast [60] and surge-spiral [38, 75] are the most successful bio-inspired algorithms in real robot tests.
The robot flies straight upwind (surge) until it loses the plume, so it starts oscillating perpendicular to
the wind flow (casting) until it finds the plume again. In surge-spiral [38, 75], casting is replaced by an
archimedean spiral. Even though these algorithms perform relatively well, they are not designed for
complex multi-room environments and are not easily extended to multi-agent setups. The final stage,
source declaration, has limited contributions. The most simple strategy is to set a gas concentration
threshold, but more sophisticated algorithm-specific methods exist.

Probabilistic-based strategies were designed to be more robust in turbulent conditions, though it
remains unclear if that is true in real-world experiments [131]. Infotaxis [130] constructs a ’belief map’,
keeping track of spatial probability of source presence, based on a history of chemical and wind read-
ings. Every next step is taken to decrease uncertainty in source position, the agent is seeking informa-
tion. After it was introduced in 2007, the community has quickly adopted, introducing more probabilistic
methods and implementations on robots. Source term estimation (STE) [27] is a popular subset of prob-
abilistic algorithms, fitting measurements to a pre-defined model usually using some form of Bayesian
inference. The primary challenge for implementation on a nano drone is the high computational cost
and memory requirement. Additionally, probabilistic algorithms use simplified plume models, giving
poor predictions in complex environments. Probabilistic methods have not yet considered obstacles in
their plume models, they simply lack information.

Gas distribution mapping (GDM) [67] is another solution, focusing on the creation of a map of the
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2 1. Introduction

entire area, instead of optimizing efficiency in localization. Advantages include the guaranteed local-
ization of the source, while the efficiency takes a big hit.

Multi-agent approaches are useful when deployed in emergency response, as robustness and ef-
ficiency are key to mission success. Increasing the number of agents improves robustness of the
entire system, while locating the source faster. Particle swarm optimization (PSO) [54] is frequently
used for multi-agent GSL, many works contributed modifications to improve performance. Glowworm
Swarm Optimization (GSO) [58] was used too, which, contrary to PSO, is capable of identifying multiple
sources. While PSO has the tendency to converge to local optima, GSO can converge to different local
optima in groups. Bio-inspired algorithms can be deployed with multiple robots, especially the moth-
inspired spiral-surge algorithm has been studied in a multi-agent context, though its performance was
limited [76]. Formation-based swarming [15] is another useful strategy, exerting repulsive and attrac-
tive forces in between agents. An attractive force applied towards the source can simply be chemical
gradient, or something more complex like mass flux, also called fluxotaxis [142].

When deploying probabilistic algorithms in a multi-agent setting, the exchange of data within strict
communication resource constraints can be challenging. Early works assume all-to-all communication,
communicating all measurements, while later contributions fit a Gaussian distribution to the source
likelihood map and communicate the mean and variance of that distribution [116].

The last category of GSL algorithms considered in this work are reinforcement learning (RL) algo-
rithms. RL algorithms figure out a way to optimize their policy through a user-defined reward. Gradient-
free algorithms (e.g., neuroevolution), deploy evolutionary algorithms to optimize the weights of a neu-
ral network based on simulation results. Innovations in gradient-free reinforcement learning include
indirect encoding [122], evolving the topography [121] and meta learning [99]. Gradient-based RL
algorithms optimize the policy directly based on state and actions pairs, and is more popular for high-
dimensional inputs.

In a multi-agent setup RL has been successful too, as agents are capable of learning to communi-
cate, deciding when and what to communicate [53]. Some of this theory has been applied to GSL, first
in [9, 59], later in [19, 46, 47, 133]. The results in simulation look very promising, but no exhaustive
real-world testing of a RL algorithm for GSL has been performed up to this point.

We have now introduced all algorithm categories considered, Table 1.1 shows a comparison be-
tween all the considered algorithm groups in this survey, evaluated for deployment onboard a nano
drone.

Bio-Inspired Probabilistic MA-Specific GDM (RL)
Computationally cheap V X V V V
Efficient in:

Large open space V V V X V
Turbulent flow V V V X V
Complex environment X X X X V

Extends well to MA X V V V V

Table 1.1: Properties of different solutions to GSL, bio-inspired, probabilistic, MA-specific, gas distribution mapping (GDM) and
a potential reinforcement learning strategy (speculation). Bio-inspired algorithms are the algorithms directly inspired from gas-
seeking creatures. MA-specific algorithms are the non-probabilistic and non-RL algorithms only used for a multi-agent set up,
like PSO and BESA.

Comparison of these algorithms is hard, as most works provide their own gas simulations, making it
an unfair comparison. Gas models deployed in previous GSL contributions can be divided in Gaussian
Plume Models (GPM) [141] and advection and diffusion based models [96]. GPM’s model concentration
as a Gaussian curve, increasing its standard deviation further away from the source. In advection
and diffusion based modelling, particles are released in a flow field, traced (advection) and expanded
over time (diffusion). Computational fluid dynamics (CFD) is the most accurate method for generation
of the flow field in complex environments. In previous works custom solutions were developed to
this problem, though especially for the success of RL-based GSL, there is a need for an end-to-end
simulation platform to efficiently generate and model gas dispersion in complex environments.

In this review, we point out four main research gaps:

• No real robot experiments exist with reinforcement learning algorithms for GSL, except for one
very small-scale experiment in [59].
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• The vast majority of all contributions test their strategies in a small-scale environment without
obstacles, only two very recent [28, 125] large-scale experiments with obstacles exist. These
contributions could locate a source in larger areas with obstacles, though their efficiency is un-
known.

• Comparison between models is almost impossible at this point, as each work tests the algorithms
in a different environment under different conditions. There is a need for a software platform
for end-to-end environment generation and dispersion modelling, which would not only allow for
learning in simulation, but would also provide a useful benchmark.

• Key factors in the success of a GSL robot are cost and agility, making a nano drone the perfect
candidate. So far, only [14] has contributed a GSL implementation on the nano scale. [14] deploys
the relatively unknown signal processing strategy proposed in [107], and demonstrates successful
GSL on a nano drone while using an environment map and external positioning. GSL on a nano
drone introduces its own unique challenges, hence more research is required to find the most
robust, efficient and fully autonomous GSL strategy for nano drones.

The remainder of this review is structured as follows: Chapter 2 introduces single agent algorithms,
Chapter 3 multi-agent algorithm and Chapter 4 reinforcement learning algorithms. Chapter 5 provides
an overview on relevant gas modelling methods, and Chapter 6 concludes the review.

Figure 1.1: A small simulated environment from [135],
with hardware in the loop.

Figure 1.2: Large complex environment with obstacles from [28].





2
Single-Agent Gas Source Localization

This chapter provides an overview of all single-agent odor source localization algorithms. We sub-
divide into two separate classes, being bio-inspired (Section 2.1) and probabilistic/map-based (Section
2.2). Finally, we review source declaration methods 2.3.

2.1. Bio-Inspired
Early work in the field of gas source localization (GSL) was primarily bio-inspired [100], modeled after
organisms such as the silkworm moths [60] or E. coli bacteria [1]. We first compare strategies ca-
pable of locating the plume, when no chemical readings are present yet. Once the plume has been
located, chemotaxis and anemotaxis strategies are compared, using only chemical or chemical and
wind information respectively.

2.1.1. Plume Acquisition
Before any chemical signal is detected, the robot will need to find the edge of the plume. Three bio-
inspired methods are known: 1) passive monitoring [52], 2) random walk [26] and 3) linear search [16].
In passive monitoring, the agent simply waits before a moving source is detected, when it starts follow-
ing the target. This strategy was observed in male moths, waiting for an odor of pheromone released
by the female moth [52].

(a) Random walk plume acquisition method.
The agent keeps traveling forward until it
finds an obstacle and rotates a random an-
gle.

(b) Linear search plume acquisition at an an-
gle w.r.t. the wind vector, in a scanning
pattern separated by distance .

Figure 2.1: Random walk and linear search plume acquisition strategies demonstrations.

Figure 2.2: Hex path algorithm, de-
ciding to move clockwise or anti-
clockwise at based on readings at

and .

The most straight-forward active searching strategy is a random walk (Figure 2.1a), which moves
forward until it encounters an obstacle, and then rotates for a random angle. The resulting behavior

5
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is comparable to Brownian motion [23]. In the E. coli-inspired algorithm [1], every step has a random
length and heading change, according to a Poisson distribution. In some cases the distribution is biased
by chemical gradient in reactive plume tracking [3].

Finally, in a linear search (Figure 2.1b) the agent deploys a scanning pattern at an angle 𝜃 w.r.t. the
wind vector and separated by a distance 𝑙. This strategy has been observed in dung beetles, and is
theoretically most effective when 𝜃 = 90∘. Generally, from [105], a linear search results in a shorter
mean path length as compared to a random walker. This is interesting from an evolutionary point of
view, as the dung beetle seems to have evolved to use its wind information to be more effective as
compared to the E. coli bacteria.

2.1.2. Chemotaxis
Chemotaxis is defined as the movement of a cell or organism towards concentration of a substance. It
was first discovered in a plant’s (bracken fern) spermatozoa [98]. Not only has it proven to be essen-
tial in the beginning of life, it also a key mechanism in injury recovery and immune responses [136].
While the exact definition of chemotaxis in the field of robotics is ambiguous, it is usually referred to as
algorithms using a chemical gradient and/or reading to locate an odor source.

In this section, we refer to chemotactic methods when they rely solely on information from a chemical
sensor. The three single-agent chemotaxis algorithms reviewed are: 1) Braitenberg Vehicles, 2) Hex-
Path algorithm and 3) E. coli inspired methods.

Braitenberg Vehicles

Braitenberg introduced the Braitenberg vehicles in 1986 [13], autonomous agents with a direct coupling
between some sensor and actuator (wheels). He demonstrated phototaxis by a simple autonomous
agent, that was surprisingly successful, given its simple strategy. Different Braitenberg vehicles were
presented in [13], establishing different couplings between two bilateral sensors. For chemotaxis, two
chemical sensors can be connected through inhibitory cross-coupling or excitatory ”same side” connec-
tions. The robot now simply turns towards the side with highest sensor reading. [68] compared different
Braitenberg vehicles for GSL, and concluded that pure Braitenberg vehicles are efficient but unstable
for the task. In turbulent flow, a direct coupling between gradient and actuator control is likely to lead to
considerable instability and often inefficient paths. However, when seeking point sources such as light,
or odors under water, the strategy can be much more useful. For instance, [34] deployed a Braitenberg
vehicle underwater for odor source localization, and observed behavior remarkably similar to that of
lobsters. Lobsters use odor source localization by two spatially separated sensors to locate food. The
biomimetic Braitenberg vehicle in [34] helped to better understand the Lobster’s strategy.

Algorithm 1: Hex-path algorithm
while True do

if (𝐼 > 𝐼 and 𝑅 = 𝐴.𝐶.) or
(𝐼 < 𝐼 and 𝑅 = 𝐶.𝑊.) then

rotate 60∘ A.C. ;
move forward distance 𝑚 ;

end
else

rotate 60∘ C.W. ;
move forward distance 𝑚 ;

end
end

Algorithm 2: E. coli algorithm
while True do

if current gas_read > previous gas_read
then

rotate ± random(5 ∘) ;
move forward random(0.05 m) ;

else
rotate ± random(180 ∘);
move forward random(0.05 m) ;

end
end

Hex-Path Algorithm

The hex-path algorithm (Figure 2.2, Algorithm 1), originates from an early feasibility study in the Robo-
Mole project [104], that aimed to develop a robotic mole capable of navigation based on chemical
information. In Algorithm 1, 𝐼 is the measured intensity at step 𝑛 and 𝑅 is the rotation made at step 𝑛,
clockwise or anti-clockwise. The strategy might initially be difficult to understand, but can be clarified
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with Figure 2.2. Let’s assume 𝐼 > 𝐼 , i.e. from 𝑛 − 2 to 𝑛 − 1 a negative gradient was measured.
The agent should now rotate anti-clockwise at 𝑛, as rotating clockwise would move in the same nega-
tive gradient direction. In short, if a positive gradient exists between 𝑛 − 2 and 𝑛 − 1 we want to move
in the same direction, whereas we want to avoid that direction if the gradient was negative.

E. coli Inspired Methods

The E. coli-inspired algorithm [81] in Algorithm 2 is more straightforward, roughly maintaining heading
with positive heading while considerable changing course with negative gradient. A considerable draw-
back of this E. coli-inspired and the hex-path algorithm is that they heavily rely on gradient information,
which is often unstable and noisy. As a consequence, they are only useful in simulator or for seeking
a stable point source.

A more stable (E. coli) bacteria-inspired algorithm is the Biased Random Walk (BRW) [80]. Re-
searchers first developed a BRW to model E. coli’s behavior they observed under a microscope [10].
Every step a heading change and step length is computed, described by a Poisson distribution. Af-
ter every step a new Poisson distribution is generated, imposing a longer step for increasing positive
chemical gradient. The mean of the Poisson distribution describing the step length, 𝜆 , is scaled
linearly with chemical gradient and steepness 𝛼.

In [79], a BRW algorithm was implemented along with a very simple chemotaxis algorithm. The
chemotactic approach measures with two distinct sensors, and moves towards the direction with high-
est reading. The authors of [79] show that this simple strategy leads to more direct paths compared to
the BRW algorithm. They conclude the BRW is more suitable for implementation on a robot as it is far
more robust, but produces inefficient paths. Chemo-BRW [24] has emerged as a hybrid between the
two, improving efficiency of the BRW algorithm.

2.1.3. Chemotaxis and Anemotaxis
The algorithms in Section 2.1.2 have had limited success in real-world applications, as they are either
too unstable or inefficient. In nature, organisms regularly exploit wind vector information in odor source
localization. This has resulted in a class of algorithms in robotics that uses chemical readings (chemo-
taxis) and wind information (anemotaxis). As it turns out, considering wind information leads to some of
the most efficient and robust bio-inspired GSL algorithms. We review the most influential chemotactic
and anemotactic strategies based on two organism: the dung beetle and silkworm moth.

Dung beetle Inspired Algorithms
The dung beetle uses a simple strategy to follow odour plumes from a cow pat [16]. It first performs a
linear search (Section 2.1.1) at 𝜃 = 90∘, and consecutively engages in reactive plume tracking referred
to as the zigzag algorithm [45].

Figure 2.3: Dung beetle zigzag algorithm [45]. The agent
performs a zigzag pattern at an angle with respect to
the wind vector. When it loses the plume it will continue
traveling for before it continues the zigzag pattern.
Illustration originates from [92].

Figure 2.4: Surge-cast algorithm [75]. The agent flies
upwind (surge), then swings side to side when it loses
the plume (casting). The wind direction is only measured
when the robot switches from strategy, surge to cast or
cast to surge. In a perfect flow field all surges would be
parallel, but in practice local wind vectors vary.Illustration
originates from [92].

The reactive plume tracking, as shown in Figure 2.3, engages in a zizag pattern at angle 𝛼 with
respect to the wind vector. If the agent loses track of the plume for a distance 𝑑 , it changes heading
and continues the zigzag pattern. This method was implemented on a robot in [105], where the authors
constructed an environment on a table tennis table. A fan was used to spread 5% ammonia, resulting



8 2. Single-Agent Gas Source Localization

in turbulent flow. Out of the 10 experimental runs, the source was touched 7 times, passed by closely
2 times and not found at all once, due to a spurious sensor. Compared to a Braitenberg vehicle tested
in the same environment, the dung beetle algorithm is more robust but less efficient in path length. The
next section considers the moth-inspired algorithms that are closely related to the zigzag approach, but
result in more efficient paths.

Silkworm moth inspired algorithms
As introduced in Section 2.1.1, the male silkworm moth locates female mates by tracking a pheromone
plume the female releases. Early work described the behavior solely from a biological perspective [4,
51, 52, 82, 139], and concluded the efficiency of the strategy is astonishing.

The male moth first waits before it detects pheromone (i.e., passive monitoring), it then starts flying
upwind (surge). If it loses the plume it will start swinging from side to side with increasing amplitude
(casting). Hence the algorithm is referred to as the surge-cast algorithm [75].

Different flavors of the algorithm are surge-spiral [38, 75] and pure casting. Surge-spiral is similar
to surge-cast, only now casting is replaced by an Archimedes spiral. The robot estimates its position
relative to the plume (i.e., left or right), based on wind information. It uses that information to determine
the desired spiral orientation. In pure casting the robot performs a strategy very similar to the zigzag
dung-beetle algorithm, only now after it has lost the plume for 𝑑 , it travels perpendicular to the wind
vector until it acquires the plume. Consecutively, it continues at an angle 𝛼 w.r.t. the wind vector.

Regardless of the origin of the strategy, nearly all bio-inspired chemo- and anemotaxis algorithms
consist of the building blocks we have covered. By analysis of robot experiments [74, 75], simula-
tion [72] and mathematical modelling [73], it was established that surge-cast and surge-spiral are the
most effective bio-inspired strategies.

2.1.4. Real-world effectiveness
The main advantages of the bio-inspired algorithms are their low compute requirements and optimal
behavior in certain environments. Mostly in open spaces and relatively stable airflow they perform well.
The low computational requirement makes them a suitable for implementation onboard a nano drone,
however their limited usefulness in complex environment makes real-world use challenging.

It’s an interesting question if insects have evolved to search for gas in an optimal way. A key aspect
to consider is that they do not only evolve a brain, but also have great sensing capability. Their sensing
goes way beyond what we can achieve with sensors of this scale today. Hence, it is uncertain if the
bio-inspired strategies are optimal with our hardware.

The bio-inspired algorithms might be close to optimal in nature, though an interesting research
question is: what GSL behavior is optimal on a source-seeking robot?.

2.2. Probabilistic and map-based methods
The methods reviewed up to now are relatively simple and rule-based. Another promising class of
algorithms are probabilistic, often generating a belief map with probabilities for each discrete possible
source position. They do so based on an internal flow model, and differ in strategy (i.e., decisions
based on that map), or flow model.

Its main observed assets are its robustness in turbulent flow and efficient multi-agent execution.
The three categories reviewed here are 1) Bayesian-based strategies, 2) Hidden Markov Models, and
3) Kernel Methods.

2.2.1. Bayesian Inference
Source Term Estimation (STE)
Bayesian methods need a plume model to generate a source likelihood map (SLIM). Early methods [5,
27] assumed a Gaussian distribution in the flow direction, according to Equation 2.1 and visible in
Figure 2.5. Along the axis of the plume 𝑥, parallel to the wind direction, the concentration profile can
be described by a Gaussian distribution with increasing standard deviation. While Gaussian Plume
Models (GPM) can be run in near real-time, their accuracy is often times low in presence of turbulent
conditions and obstacles.

Gaussian plume models have been deployed repeatedly for source term estimation (STE) [12, 43].
Based on the history of recorded measurements they estimate the most likely source parameters.
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𝐶𝐶 = 𝑒𝑥𝑝 ( −𝑦2𝜎 (𝑥, 𝐹)) (2.1)

X (𝑡 , 𝑡k) = ∫ k

U(X(𝜏))𝑑𝜏 + ∫ k

N(𝜏)𝑑𝜏 +Xs

(2.2)

𝑆 (𝑡 , 𝑡k) = 𝑒 ( ( , k))( k ) − ( ( , k))( k )2𝜋 (𝑡k − 𝑡 ) 𝜎 𝜎 𝐿 𝐿
(2.3) Figure 2.5: Representation of Gaussian

Plume Model, from [12].

Advection-based
In [96], a novel advection-based approach was introduced. Instead of considering a time-averaged
concentration, this model aims to use ’spikes’ of chemical detections, especially useful in unstable
flow. Equation 2.2 describes the core idea of this strategy, being to let particles of gas travel along
a wind path. In Equation 2.2, X (𝑡 , 𝑡k) represents a position (𝑥, 𝑦) distribution for a particle at 𝑡 ,
released at time 𝑡 . U(X(𝜏)) represents the position-dependent wind vector, while N(𝜏) is a zero-mean
and Gaussian random process with 𝜎 , 𝜎 variances. Xs is the start position of the particle at time 𝑡 .
Assuming that the agent was alive from 𝑡 , it will use the measured wind vector (𝑣 , 𝑣 ) at the agents
position in that time frame. This, however, initiates an inaccuracy, as the wind vector is both space and
time dependent. The N(𝜏) term is designed to account for this inaccuracy, but it remains the single
biggest weakness of this model: assuming a constant global flow field, which is especially inaccurate
in presence of obstacles.

Using Bayes’ theorem, Equation 2.3 can be derived. For the full derivation we direct the reader
to the original work [96]. 𝑆 (𝑡 , 𝑡k) describes the probability of a particle detected at cell 𝐶 detected
at time 𝑡 , originated from cell 𝐶 at time 𝑡 . To generate a full source probability map, we now have
to compute 𝑆 (𝑡 , 𝑡k) for 𝑡 ∈ [𝑡 , 𝑡 ] and for each cell. The original work [96] proposes a strategy to
reduce computational effort, but the computational cost will still be considerable.

Infotaxis
In [96] the novel advection-based model was proposed to construct probability maps, but it was not
coupled to robot motion. In [130], Infotaxis was introduced. In infotaxis, the agent has access to
the probability map from [96] and locally maximizes information gain, hence infotaxis. It does so by
computing the expected change in Shannon’s entropy [110] of moving to a specific cell. It locally
maximizes the reduction of entropy, and with that gained knowledge. The rationale is that cues arrive
at a higher rate closer to the source, such that the agent will seek the source.

Infotaxis is probably the most well-known (probabilistic) method for gas source localization. Ever
since its invention, modifications and performance analyses have been contributed [6, 37, 86, 91, 131]
In [131] Infotaxis was compared to three bio-inspired algorithms in a small simulation environment,
with the agent starting 2 𝑚 from the source. The authors concluded the bio-inspired algorithms are
more efficient in presence of a high chemical doses, while infotaxis shows to be superior in lower
concentrations. In [91], infotaxis was tested in dilute conditions in a larger 4 x 5 𝑚 area, showing that
infotaxis is robust even in larger testing setups. To the best of our knowledge, no testing has been
carried out in larger and more challenging environments to this date.

Hidden Markov Models
In [30], a Hidden Markov Method was adjusted for plume mapping. The hidden Markov plume model
(HMPM) is represented by the parameter vector 𝜆 = [𝜋, {A (𝑡 )} ,b]. Here 𝜋 is the source probability
vector, A the state transition matrix and b the detection probability vector.

A represents the probability for a plume of detectable odor to move from cell 𝐶 (𝑡 ) to 𝐶 (𝑡 ).
A is computed by collecting the previously measured wind vector at time 𝑡 , computing the distance
traveled in 𝑑𝑡. Now, assuming this distance is smaller than the cell size, the projected traveled distance
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is normalized over cell size. This is now used as the probability for detectable odor to leave cell 𝐶 (𝑡 ).
b is the probability of detecting an odor, given that the current cell contains odor. The elements of b
are identical, as the sensor performance is assumed to be constant.

Based on bothA and b, the agent updates the source probability vector (map). Contrary to infotaxis,
the HMPM follows the most likely paths. In the original work [30] only simulation experiments were
demonstrated, while in [96] the model was tested on a dataset. To the best of our knowledge, no
full-fledged robot experiments have been performed with a HMPM.

The main weakness of this strategy is, similar to the advection-based model from [96], that the flow
is assumed to be spatially invariant. In an open space this may not be a problem, but in an environment
with numerous obstacles this may become catastrophic. There is no apparent solution to this problem,
as the agent only has access to its own wind vector information.

2.2.2. Gas Distribution Mapping (GDM)
Reactive searching for a gas source has the potential to be the most efficient strategy for odour source
localization. However, especially in early works, gas was often simply mapped along a scanning pat-
tern. The first work exploiting this idea [67] simply created a gridmap with the average of the measured
gas concentration. We review the existing GDM work, as it may be a practical solution in emergency
response.

Kernel DM+V
The Kernel DM+V algorithm was proposed in [66], having the advantage of not relying on a particular
plume model or environmental conditions. Kernel DM+V is a non-parametric estimation approach,
interpreting measurements as noisy samples from the distribution that is to be estimated. The goal is
to learn a distribution of gas measurements as a function of position.

To learn this distribution, it needs a trajectory that roughly covers the space, though the coverage
doesn’t need to be even. The measurements are weighted using an uni-variate Gaussian weighting
function to represent the importance of a measurement, making measurements more important closer
to the center of the cell. It then approximates the mean and variability (not variance) of gas readings
in each cell. A Bayesian solution would be able to arrive at the covariance of the mean of the distribu-
tion, while Kernel DM+V carries out two parallel estimation processes to estimate variability and mean
independently.

[66] demonstrated various indoors and outoors robot experiments, arriving at a high-quality gas
distribution map. Kernel DM+V adds a useful kernel approach to GDM, but should be elaborated on
with more sophisticated and efficient scanning patterns. It may be a useful tool in emergency operation,
but its biggest weakness is the requirement to roughly cover the entire searching area, before obtaining
a reliable source probability map.

SLAM-GDM
Simultaneous Localization and Mapping (SLAM) has proven to be an effective approach for complex
exploratory tasks in robotics [55]. SLAM-GDM [50, 117] is a hybrid between Kernel DM+V and Hector
SLAM [56]. The main contribution in SLAM-GDM is that it can now perform Kernel DM+V without a
positioning system, SLAM-GDM merges the SLAM occupancy map with the gas distribution map. The
entire systems runs in real-time and is controlled from a base station, making it a practical solution for
emergency response. Though fully autonomous operation, especially in swarm configuration, is likely
to be more efficient.

2.3. Source declaration
Source declaration adds up to identifying a source when the robot is within proximity. In many algorithms
this stage is not specified, and is generally carried out by camera or human vision.

In the zigzag algorithm [45](Section 2.1.3), the agent analyzes the spatial proximity of plume detec-
tion points. If the points are far apart, this indicates a distant source, assuming the plume has already
been acquired (i.e., the robot is situated down-wind w.r.t. the plume). One of the challenges with this
strategy is that it requires human insight to determine determine a threshold for detection proximity,
which is source-dependent.

In the surge-spiral algorithm [38, 75](Section 2.1.3), agents climb up-wind with their surge-spiral
strategy, until they have established a pattern. If the agent reaches the source, and surges even more
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upwind, it will lose the source and start spiraling until it has found the source again. This manoeuvre
will repeat indefinitely, making it obvious to detect a pattern. While it might be possible to develop a
source-independent implementation of this strategy, it’s weakness is that local optima might look like a
source. A small cycle of short surges and casts may occur even at distance from the source.

In [68] local optima were used to predict source proximity, where a higher frequency of local optima
signifies closer proximity to the source. Similar to the zigzag’s declaration approach, this strategy has
the issue that a human threshold needs to be defined. In [67] a gas concentration map was used
to estimate the source position, based on the cell of the highest concentration. [65] argues a series
of measurements is required for source declaration. It performs a number of turns and subsequently
feeds the measurements into a support vector machine (SVM) [17].

A few map-based and probabilistic methods have been exploited to declare source position. [93] pro-
posed a particle filter-based approach to source declaration.





3
Multi-Agent Gas Source Localization

In a real emergency response, the objective is to localize the gas source efficient and reliably. While
a single robot might be capable of the task, it is likely that deployment of multiple robots, especially
when coordinated, will lead to better results. In the best case, the agents will collaborate and share
information, leading to more efficient paths [76]. If a group of robots is deployed without collaboration
but with physical interaction, the performance gain will be limited.

We divide this chapter in traditional robot swarming and bio-inspired algorithms (Section 3.1) and
Probabilistic and Map-based strategies (Section 3.2).

3.1. Traditional Robot Swarming and Bio-Inspired Algorithms
3.1.1. Chemotaxis
Gradient-Based
Perhaps the most simple gradient-based multi-agent chemotaxis algorithm was proposed in [83], which
uses a local localization system communicates between agents. Out of the visible agents, each agent
moves towards an agent randomly picked from those with highest reported gas intensity. The authors
provide robot experiments, but do not show a comparison or exhaustive review of performance.

Particle Swarm Optimization (PSO)
Particle swarm optimization (PSO) is a computational optimization method, inspired by social behavior
of animals such as bird flocks and fish schools [54]. PSO is a central strategy in multi-agent GSL, we
therefore review the fundamental concepts of the algorithm.

The original PSO algorithm is displayed in algorithm 3. Each agent makes a decision based on 1)
the best position it has seen, 2) the best position the swarm has seen and 3) uniform random variables.𝑆 agents are initialized with a uniformly distributed initial position and velocity, x ∼ 𝑈 (b ,bup) and
vi ∼ 𝑈 (− |bup − blo| , |bup − blo|). Here 𝑏 and 𝑏 are the boundaries of the search-space. Then,
in each step, the new velocity of the agent is determined based on the position of the best found position
by the swarm, and the best position the individual has seen. 𝜔, 𝜙 and 𝜙 are hyper parameters
configured by the user.

In [49] PSO was first implemented for GSL, demonstrating different approaches to PSO-based GSL,
proposing both chemotaxis and anemotaxis strategies based on PSO (Subsection 3.1.2). [106] first
demonstrated feasibility in the real world, by deploying three ground robots in a 4.88 x 4.88𝑚 test area.
The bare form of PSO resulted in a success rate of 4/6 experiments with an average search time to
success of 252 seconds. While the experiments proved feasibility, success rate and efficiently can be
improved on.

A substantial weakness of PSO-based algorithms is that they assume the global and local optimum
to be constant, i.e. the stagnation assumption [11]. In the context of GSL this assumption is invalid,
as the concentration map of the environment is time-variant. A possible solution to this problem was
proposed as Detection and Responding PSO (DR PSO) [49]. In DR PSO, if the global optimum has not
changed for a number of iterations, the agents are randomly spread across the environment. This is
especially relevant in the plume acquisition stage, when local optima are frequently observed. Finally,

13
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in [97], Force Field Particle Swarm Optimisation (FFPSO) was proposed such as to avoid collisions
with other agents. It was implemented on a swarm of Crazyflie nano drones [32], though in a small
area with a simulated source.
Algorithm 3: PSO Algorithm
for each particle 𝑖 = 1,… , 𝑆 do

Initialize the particle’s position with a uniformly distributed random vector: x ∼ 𝑈 (b ,bup) ;
Initialize the particle’s best known position to its initial position: p ← x ;
if 𝑓 (p ) < 𝑓(g) then

update the swarm’s best known position: g ← p ;
end
Initialize the particle’s velocity: vi ∼ 𝑈 (− |bup − blo| , |bup − blo|);
while a termination criterion is not met do

for each particle 𝑖 = 1,… , 𝑆 do
for each dimension 𝑑 = 1,… , 𝑛 do

Pick random numbers: 𝑟 , 𝑟 ∼ 𝑈(0, 1) ;
Update the particle’s velocity:
v ,d ← 𝜔 ⋅ v ,d + 𝜑p ⋅ 𝑟p ⋅ (p ,d − xi,d) + 𝜑g ⋅ 𝑟g ⋅ (gd − xi,d) ;

end
Update the particle’s position: 𝑥 ← 𝑥 + 𝑣 ;
if 𝑓 (xi) < 𝑓 (pi) then

Update the particle’s best known position: pi ← xi ;
if 𝑓 (p ) < 𝑓(g) then

Update the swarm’s best known position: g ← pi;
end

end
end

end
end

Biasing Expansion Swarm Approaches (BESA)
A Biasing Expansion Swarm Approach (BESA) for GSL was proposed in [18]. The algorithm divides
the search area into a discrete grid, with no more than a single agent in each grid cell. Then, in each
step, each robot in the swarm can expand to a cell that has at least one agent in its adjacent cells, to
keep the swarm together.

For all expansion cells, each cell’ biasing parameter B is computed by 𝐵( , ) = ∑ ( ). Here𝐾 is a constant, 𝑛 the number of agents contributing their readings to the swarm, 𝐶 the concentration
agent 𝑖 is recording, and 𝑟 is the distance from (𝑥, 𝑦) to the position of agent 𝑖. Intuitively, an agent’
reading contributes more when its closer to the expansion cell considered, similar for a higher reported
concentration. Each agent makes a choice based on the cell with the highest biasing parameter.

Simulation results were presented in [18], demonstrating BESA is more efficient as compared to
a gradient-seeking baseline, with no collaboration. To the best of our knowledge, no physical robot
experiments exist.

Glowworm Swarm Optimization (GSO)
GSO [58] is a swarm intelligence and optimization algorithm inspired by glowworms, also referred to
as fireflies or lightning bugs. In GSO, the ’fireflies’, glow at an intensity that approximates the fitness
function at that point in space. Flies with higher intensity attract flies with lower intensity. It also involves
a dynamic decision range, discounting fireflies that are far away, especially when plenty other closer
agents are visible. This makes the strategy different compared to evolutionary multi-modal optimiza-
tion [33], and makes GSO capable of localizing multiple local optima. This is of great interest in GSL,
as local optima regularly exist in presence of turbulence and obstacles.

In [57], simulation results are presented for odor source localization by GSO. It also includes a
simple obstacle avoidance model by proximity-detection sensors. In simulation the swarm was suc-
cessful, being particularly suitable for locating multiple sources. From using 13 agents, on average 2/3
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sources were located. However, the sources were modeled as dispersion, which isn’t considered to
be accurate in many real-world applications. The work was extended by phototaxis robot experiments,
implementing GSO on a swarm of ground robots [58].

A modified GSO (M-GSO) was applied in a simulation environment in [144], with its main feature
being a global random search of self-exploration and local search based on GSO. The objective of
M-GSO is to achieve superior exploration. The author’s simulations show M-GSO outperforms GSO,
finding 10/10 local optima compared to 7/10 by GSO.

Biased Random Walk (BRW)
In Section 2.1.2 BRW was introduced as a relatively robust method, but without a measure to allow
for communication. [80] proposed computation of a bias to allow for collaboration, as shown in Equa-
tion 3.1.

Total Bias = ∑ 𝛼 , × 𝑅𝑃 ,
No agents for 𝑖, 𝑗, 2, … , 𝑁 and 𝑖 ≠ 𝑗 (3.1)

Here Total Bias is the bias angle added to the locally computed angle from local measurements.𝑅𝑃 , is the angle agent 𝑖 has to rotate to face agent 𝑗. 𝛼 , is computed by 𝛼 , = 𝑓 / (𝑓 + 𝑓 ), where 𝑓
is the concentration measurement of agent 𝑗. Hence, agent 𝑖 will be biased towards agents with high
chemical readings.

The authors of [80] applied the bias term to both BRW and Chemo-BRW in simulation, deploying
a Fire Dynamics Simulator (FDS), based on Computational fluid Dynamics (Section 5). They found
substantial efficiency improvements when collaborating through the bias term, with more significant
improvement for BRW (∼20 % shorter paths) as compared to Chemo-BRW (∼10 % shorter paths).
This is likely caused by the superior performance of single-agent Chemo-BRW, having less room for
improvement by collaboration. To the best of our knowledge, no robot experiments tested this approach.

3.1.2. Chemotaxis and Anemotaxis
PSO-Based
The first PSO-based GSL work [49] also contributed modified PSO (MPSO), incorporating wind infor-
mation. The authors propose two distinct MPSO algorithms: wind utilization implementation I, WUI1,
and implementation 2, WUI2.

In WUI1 two vectors are constructed, being V∗, the output from the bare PSO algorithm, and W(𝑡),
the local wind vector. The angle between the two vectors is defined as 𝜃. In WUI1 the final moving
vector, V , is equal to V∗, expect for the case when 𝜃 is between a certain range, in that case V = 0 .
This range is also referred to as a forbidden area, preventing the agent to go downwind. A weakness
of this approach is that the forbidden range needs to be carefully configured, having a great impact on
performance.

In WUI2, the same two vectors are used to construct 𝜒 (W(𝑡),V∗(𝑡)) = (1 − (W(𝑡),V∗(𝑡))) .𝜒 is a sinusoidal function with 𝜒 = 0 for 𝜃 ∈ [0, 2𝜋] and 𝜒 = 1 for 𝜃 = 𝜋. Now, the final computed
velocity vector can be computed by V = 𝜒 V∗. Taking a step back, this means that if the original PSO
outputs a velocity vector that is completely downwind, V = 0. On the other hand, if the original PSO
sends the agent straight up-wind, V = V∗.

Ever since its first introduction, PSO has been applied in a variety of robot experiments. While most
of them solely consider a small-scale and obstacle-free scenario, the authors of [125] execute a realistic
set of experiments. The authors released four 20 lb propane tanks, in a ∼ 35𝑥40𝑚 outdoor area. A
more practical ’waypoint-PSO’ was introduced, updating the next waypoint occurs only if all agents have
reached their next waypoint, or run out of time. The Enif quadcopter used in these experiments [39] is
equipped with a lidar sensor to avoid obstacles in its trajectory by the open sector collision avoidance
method [126]. Another PSO-based algorithm modified for GSL is Probability-PSO [64] (P-PSO). P-PSO
uses bayesian inference and variable-universe fuzzy inference to estimate source location probability.
The idea here is that chemical readings are unstable, hence using a source likelihood map may yield
better results. All agents share a merged likelihood map. The work only contains high-level simulation
experiments, making it hard to judge its performance.

Extending Bio-Inspired Algorithms
An interesting question is how a swarm of agents perform when each individual is loaded with a bio-
inspired strategy. In [76], the authors compare deployment of a swarm of robots individually performing
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casting, surge-spiral and surge-cast. In a set of simulation experiments, up to 5 robots are deployed
in a 18 𝑚 x 4 𝑚 arena, avoiding the other agents by a Braitenberg [13] obstacle avoidance strategy.
The authors show that swarm deployment of the single-agent bio-inspired algorithms does not yield
significant performance improvement. Especially for casting and surge-casting, the lowest traveled
distance before source localization is not significantly improved when deploying a swarm.

Only when deploying the surge-spiral algorithm, especially with a wider spiral, significant improve-
ment is observed in performance. The spiral makes the robot leave the plume for a substantial time,
giving the other robots time to pass (i.e., less inference). Unfortunately, this surge-spiral configuration is
inefficient, making deployment of single-agent bio-inspired algorithms without cooperation inefficient.
Naturally, the entire system becomes more robust to failure of a single agent, but efficiency can be
improved only by cooperation.

Two cooperative versions of spiral-surge were presented in [38], attract and kill. In attract,
a robot that has found a plume signal sends a ’come here’ signal to all other agents, to point them
in the right direction. In kill, once one agent reaches a certain chemical threshold, all other agents
are put into a power-saving mode. The purpose of this strategy is to develop a swarm capable of
locating a gas source before all batteries run out. The authors demonstrated, in a range of robot and
simulation experiments, that attract and kill outperform a non-cooperative swarm of spiral-surge
robots. The strategies are shown to gain advantage over no communication with an increasing group
size, especially when deploying more than five robots.

Formation-based swarming
Formation-based control is a well-known strategy in robot swarming [15]. The agents align in a certain
formation while completing their objective, maintaining communication. Over the past decades, differ-
ent formation-based strategies were developed for GSL [20, 77, 113–115]. The first formation-based
GSL strategy[77] applies an upwind force 𝑓 and a crosswind force 𝑓 to each agent. While the wind
vector may differ from agent to agent, it is an approximation of a global coordinate system between all
agents. 𝑓 = 𝑢 + 1𝑁 ∑𝑦 (3.2)

𝑓 = 𝑎𝑓 − 𝑟𝑓 (3.3)

𝑓 = ∑ 𝑥 𝑐∑ 𝑐 (3.4)

𝑓 = 1𝑁 ∑, me

1𝑥 (3.5)

Here 𝑓 , defined by Equation 3.2, is the force each agent applies in upwind direction. 𝑢 is the
constant upwind drag, 𝑁 the number of agents, and 𝑦 the location of the other agents 𝑖 along the
upwind axes. 𝑓 keeps the agents aligned along the wind axis, an agent that is running behind will see
larger 𝑦 ’s and resulting in a larger upwind force.𝑓 (Equation 3.3), is the crosswind force and a weighted difference between an attractive and re-
pulsive force. The attractive force 𝑓 draws agents towards other agents with high gas concentration
readings 𝑐 . 𝑥 is defined as their position on the crosswind axis. Finally, the repulsive force 𝑓 is put in
place to maintain distance between the individuals, i.e. stay in formation.

Summarizing, in wind direction this algorithm keeps all agents aligned while in crosswind direction
it seeks superior gas concentration. The authors tested the strategy with up to five robots in a small
wind tunnel, and demonstrated performance superior to previous bio-inspired algorithm. The algorithm
should be tested in more complex and turbulent environments, as a wind tunnel provides a relatively
stable flow field.

After this first formation-based GSL strategy, novel works contributed additional theories and ex-
periments. In [85] the authors investigated the effect of different behaviors. Their simulations and
experiments confirmed that a crosswind formation is optimal, especially when the agents are equidis-
tant with respect to each other. The optimal distance between agents depends on wind speed. Around
the same time, [113] demonstrated alternative formation configurations. The experiment set was very
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small, making these impossible to be compared to a cross-wind formation. To the best of our knowl-
edge, no formation-based GSL algorithms have been applied in larger and more complex environments.

Fluxotaxis
Fluxotaxis [142] is a framework for physics- and formation-based control of a swarm of gas-seeking
robots. It allows a fully autonomous swarm to self-organize into a structured lattice arrangement, main-
taining the formation even when avoiding obstacles.

The lattice between the robots is maintained by a force law, introducing either attraction or repulsion.
The force is defined by 𝐹 = , where 𝐹 is the force magnitude, 𝐺 a constant, 𝑟 the distance between
two agents, and 𝑝 another user-defined constant. The desired separation between two robots is 𝑅,
making 𝐹 repulsive if 𝑟 < 𝑅 and attractive when 𝑟 > 𝑅. The lattice can contract and expand by varying
R and take different shapes.

The idea behind fluxotaxis is to not seek a local chemical reading, but to seek mass flux: 𝜌�⃗�.
Equation 3.6 describes the divergence of mass flux, which is positive for a source. Here 𝜌 is the
chemical density of the gas to be located, �⃗� the velocity vector, 𝑢 the 𝑥 component of velocity and 𝑣
the 𝑦 component.

∇ ⋅ (𝜌�⃗�) = 𝑢𝜕𝜌𝜕𝑥 + 𝜌𝜕𝑢𝜕𝑥 + 𝑣𝜕𝜌𝜕𝑦 + 𝜌𝜕𝑣𝜕𝑦 (3.6)

Each agent in the lattice computes the local amount of chemical flux, 𝜌�⃗�. The final applied force
vector of each agent is the sum of the attraction-repulsion force and a force in the chemical flux direction.
Hence, the lattice will be drawn towards agents detecting more mass flux. If very low mass flux is
detected by the swarm, it will resort to an additional approach to maximize use of available information,
as described in [118].

The authors [142] test the lattice repulsion-attraction strategy not only with their mass flux strat-
egy, but also with chemotaxis and anemotaxis strategies. In chemotaxis the lattice-introduced force is
summed with a force in the direction of individually recorded chemical gradient, while in anemotaxis
every individual agent performs a surge-cast algorithm [75], while keeping the lattice in formation.

The authors show a very convincing win for fluxotaxis, in both simulation and robot experiments. A
shortcoming of this work is that the strategies are highly susceptible to parameter tuning. For instance,
in the chemotaxis strategy, the authors do not expand on how the final chemical force is computed. Let’s
say a gradient is observed, what force is applied to the individual? Without knowing the maximum

expected over a trial run, answering this question is difficult. Seeing such a convincing win for
fluxotaxis, we should ask the question if all strategies are configured correctly. Fluxotaxis certainly is
an interesting idea though, as it merges anemotaxis and chemotaxis information.

Frontier-Based
In [84] a frontier-based approach to GSL was proposed. A frontier is the edge of the explored area, that
is not a wall or obstacle (Figure 3.1). The swarm of robots may decide to explore one of the frontiers

Figure 3.1: Problem description from [84], frontier based GSL.
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based on a cost and utility function. Each agent travels to the frontier that has highest profit, where𝑝𝑟𝑜𝑓𝑖𝑡 = 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 − 𝛽 ⋅ 𝑐𝑜𝑠𝑡. In this case cost is proportional to required distance traveled and utility is
odor concentration at the frontier.

The system is decentralized, performing map merging for obstacles and odor measurements through
topological graph matching [41]. The agents also correct measurements by overwriting previous read-
ings if they move in an already explored area. This is useful in light of the time-variant nature of gas
sources. The authors tested the approach in simulation and in real experiments with three robots in a
small but complex environment.

3.2. Probabilistic and Map-based
This section reviews the contributions in multi-agent probabilistic and map-based strategies for GSL.
An essential distinction between the different works is the way source likelihood maps are merged.

Infotaxis
Infotaxis [130] might be the most well-known probabilistic GSL strategy. Many works have expanded
on the original infotaxis, expanding the algorithm to work in a multi-agent setting. In [101], all-to-all
communication is assumed to accomplish a centralised fusion architecture. In other words, all data is
used to generate a common likelihood map. By a series of simulation experiments, the authors show
a diminish of return in mean search time after deploying more than seven platforms, and show a linear
growth of the mean search time with the search area.

One of the problems with assuming all-to-all communication is that relatively large amounts of data
are moved around, which can slow down the algorithm. A recent contribution [116] first used a particle
filter to generate a source probability distribution for each individual, after which a Gaussian density
function is fit. Now the agents only communicate the mean and covariance matrix of the Gaussian
distribution, instead of all recorded measurements. This strategy drastically reduces the required com-
munication bandwidth, but also saves on computational effort, as each agent now only processes its
own readings. Each agents merges its own map with those of its peers by the computationally cheap
KL divergence [21]. They also introduce seeking ’free energy’ (Equation 3.7), instead of pure entropy.𝐹 = 𝑊 + 𝑇 ⋅ 𝑆 (3.7)

Here 𝑊 is the potential energy, defined by ‖𝑟 − ∑ 𝑤 ,( )𝑟 ,( ), ‖, 𝑟 being the current robot
position and ∑ 𝑤 ,( )𝑟 ,( ), the estimated source position. 𝑇 is the temperature that controls the
relative value between the two previous terms. The main difference with pure infotaxis (i.e., seeking
just 𝑆), is that we now have a multi-objective optimization problem. On one hand gaining information
as fast as possible, and on the other hand traveling in the direction of highest source probability. The
authors show robust behavior in simulation with three robots. The ’free energy’ method outperforms
pure infotaxis in efficiency in simulation.

Bio inspiration
A recent work [12] contributed a hybrid consisting of bio-inspired and probabilistic methods. The first
step of the algorithm performs source term estimation (STE), fitting a Gaussian plume model with a
particle filter. Once a plume model is fitted, motion planning is done with bio-inspired methods such as
a Biased-Random-Walk and Surge-Cast algorithm. Real-world experiments are presented with three
robots, in 4 x 4 𝑚 testing environment. While the agents seem to get closer to the source over time, it
is unclear how efficient the approach is. It takes more than three minutes to locate the source within 1
meter, in a 4 x 4 𝑚 arena. It is likely that a pure bio-inspired or infotaxis approach will outperform this
work.



4
Reinforcement Learning

In the field of computer vision deep learning has taken off over the past decade, thanks to its unpar-
alleled performance in pattern recognition. Predominantly through supervised learning, deep neural
networks (DNN’s) have learned to estimate depth from images, recognize objects or decode handwrit-
ing. Likewise, natural language processing (NLP) has greatly benefited from supervised deep learning,
powering Google’s impressive live translation algorithms [138].

While supervised learning may be an excellent solution for pattern recognition, it can be impracti-
cal and non-optimal in robotics. A machine learning strategy known as reinforcement learning is an
emerging solution for robot control. Instead of fitting a neural network based on user-defined labels,
the agent considers the environment as a black box and trains the networks on a trial and error basis.
Reinforcement learning has the potential to find the optimal solution to a given black-box problem, while
by supervised learning, an agent will never get better than its labels.

We first discuss two categories of reinforcement learning, being 1) gradient-based (Section 4.1)
RL and 2) neuroevolution (Section 4.2), learning through an evolutionary algorithm. Gradient-based
learning assigns rewards based on the current state within an episode, while neuroevolution assess at
least one episode to compute a reward. We then dive deeper into multi-agent reinforcement learning
(Section 4.3) and finally review contributions in the intersection of GSL and reinforcement learning
(Section 4.4). This chapter is a comprehensive review of relevant methods, and does not cover all the
topics in reinforcement learning. Please refer to dedicated reinforcement learning surveys for a more
thorough review of RL methods [109, 124].

4.1. Gradient-Based Learning
The most common way of training neural networks in reinforcement learning is by gradient-based opti-
mization. The weights in the network are optimized through a stochastic gradient-descent, converging
to a local or global optima. The immense popularity of gradient-based policy optimization is fed by the
high-dimensional image inputs, resulting in sometimes millions of weights. While training by evolution
(neuroevolution, Section 4.2), may lead to superior exploration of the solution space, many researchers
think it’s impractical for large networks. Hence, in this section we review recent gradient-based rein-
forcement learning work.

A RL algorithm optimizes a reward R, where 𝑅 = ∑ 𝛾 𝑟 , the discounted future reward from𝑡 = 0 to 𝑡 = 𝑇 − 1. Here 𝛾 is the discount factor, with 𝛾 ∈ [0, 1], and 𝑟 the immediate reward at
time step 𝑡 + 1. 𝑇 is the length of the episode. The discounted future reward is a weighted sum of all
instantaneous rewards, giving less weight to more distant immediate rewards.

The immediate reward, ℛ (s ,a , s ), is a user-defined function of action and states. For instance,
when learning to avoid obstacles, it can be the distance to the closest obstacle. Through the discount
factor, the agent can learn to optimize for a sequence of actions. Maybe the agent receives a penalty
only when getting very close to an obstacle. Through the discount factor it can learn the result of
sequential actions, i.e., predict moving towards a wall will eventually lead to a penalty.

19
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4.1.1. Value Functions and Quality Functions
As we are now familiar with the problem definition in reinforcement learning, we can compare the
different principles behind some of the key gradient-based algorithms. Given a policy 𝜋, the value
function 𝑉 (s) is the expected reward when arriving in state s. It is the expected discounted future
reward given a state s and policy 𝜋 (Equation 4.1).𝑉 (s) = 𝔼[𝑅|s, 𝜋] (4.1)

If the agent could reliably predict the next state based on its actions, it could generate an action
as to optimize the value function. In practice, however, the dynamics of the system and environment,
described by transition matrix 𝒯, are unavailable. We need a function capable of using the current state
and action, the quality function 𝑄 (s,a) (Equation 4.2).𝑄 (s,a) = 𝔼[𝑅|s,a, 𝜋] (4.2)

The agent considers all possible actions and takes the action with highest expected reward.

4.1.2. Dynamic Programming
While in deep-rl the Q-function may be learned by a DNN, this is not necessarily the case. In fact,
reinforcement learning is much older than neural networks, often using look-up tables for a certain
state [127]. With increasing interest in high-dimensional inputs, such as camera’s, learning-based
reinforcement learning has gained traction. The quality function can be updated using dynamic pro-
gramming.

We define the quality function in a recursive form, as in Equation 4.3.𝑄 (s ,a ) = 𝔼s [𝑟 + 𝛾𝑄 (s , 𝜋 (s ))] (4.3)𝑄 (s ,a ) can be described in terms of 𝑄 (s , 𝜋 (s )) and 𝑟 , which will be known at the next
time-step. In other words, we can generate a new quality function estimate each time step, correcting
our previous estimates. 𝑄 (s ,a ) is updated through Equation 4.4, 𝛼 being the learning rate and 𝛿
the temporal difference (TD) error. 𝑄 (s ,a ) ← 𝑄 (s ,a ) + 𝛼𝛿 (4.4)

The definition of temporal difference varies for different RL algorithms, but can generally be defined
as 𝛿 = 𝑌−𝑄 (s ,a ), with a different 𝑌 in different algorithms. In SARSA [103], 𝑌 = 𝑟 +𝛾𝑄 (s ,a ),
substituting in Equation 4.4 gives Equation 4.5. The higher the learning rate 𝛼, the more the quality
function will be corrected based on our current observations.𝑄 (s ,a ) ← (1 − 𝛼) ⋅ 𝑄 (s ,a ) + 𝛼 ⋅ (𝑟 + 𝛾𝑄 (s ,a )) (4.5)

SARSA is an on-policy learning method, creating a new label each time step. By contrast, deep
q-learning is off-policy. It may use a replay buffer to learn 𝑄 (s ,a ) based on experience, setting𝑌 = 𝑟 + 𝛾maxa 𝑄 (s ,a).
4.1.3. Policy Gradient
Other methods are based on the policy gradient, using it to optimize by gradient ascent. First, the
reward for a specific policy 𝜋, parameterized by 𝜃, is given by Equation 4.6.𝐽(𝜃) =∑∈𝒮 𝑑 (𝑠)𝑉 (𝑠) =∑∈𝒮 𝑑 (𝑠) ∑∈𝒜 𝜋 (𝑎|𝑠)𝑄 (𝑠, 𝑎) (4.6)

Here 𝑑 (𝑠) is the probability for the agent with policy 𝜋 to reach state 𝑠 at any given point in time.𝑉 (𝑠) is again the value function (Equation 4.1), making 𝐽(𝜃) equal to the expected immediate reward
at any point in an episode. Hence it makes sense to want to maximize 𝐽(𝜃), as we will then maximize
the expected immediate reward.

In the right part of the equation, 𝑉 (𝑠) is replaced by the product of 𝜋 (𝑎|𝑠) and 𝑄 (𝑠, 𝑎). 𝜋 (𝑎|𝑠) is
the probability for the stochastic policy 𝜋 to take action 𝑎 given state 𝑠. 𝑄 (𝑠, 𝑎) is the quality function
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(Equation 4.2) given we take action 𝑎 from state 𝑠. To optimize 𝐽(𝜃) by gradient ascent we compute
the gradient by Equation 4.7, derived in [128].∇ 𝐽(𝜃) = 𝔼 [𝑄 (𝑠, 𝑎)∇ ln𝜋 (𝑎|𝑠)] (4.7)

While this was the first ’vanilla’ policy gradient update, many have followed to improve. This original
version has zero bias, but a relatively high variance, making training less stable. Different methods
were proposed to reduce variance while keeping the bias unchanged [109].

4.1.4. A brief overview of policy gradient algorithms
A large amount of policy gradient algorithms has been proposed in recent years, this section serves to
highlight some of the key contributions.

REINFORCE
A great example of the theory from Section 4.1.3 is the REINFORCE [137] algorithm. According to
Equation 4.8, it computes the policy parameter gradient.∇ 𝐽(𝜃) = 𝔼 [𝐺 ∇ ln𝜋 (𝑎 |𝑠 )] (4.8)

Here 𝐺 is the discounted future reward for time 𝑡 to the end of episode at time 𝑇. Hence the
computed gradient here is a local gradient at time 𝑡, that the algorithm can use to optimize for each
time step. It does so by:

1. Initialize random policy parameters 𝜃
2. Generate a trajectory with all its actions, rewards and states.

3. For each time step in the recorded trajectory, update the policy parameters using Equation 4.9 :𝜃 ← 𝜃 + 𝛼𝛾 𝐺 ∇ ln𝜋 (𝑎 |𝑠 ) (4.9)

Here 𝐺 is known as the full episode has already been recorded, and ∇ ln𝜋 (𝑎 |𝑠 ) can be com-
puted through the chain-rule.

Actor-Critic
In an attempt to reduce the gradient variance in the REINFORCE algorithm, actor-critic methods learn
a value function in addition to the policy. The critic attempts to learn either the quality or value function,
depending on the algorithm. The actor makes actions in the environment and, guided by the critic,
changes its parameters 𝜃.

In a simple actor-critic model, Equation 4.9 is used to update the actor, only now 𝐺 is replaced by
the quality function , described by the critic.

By traveling along the trajectory, the critic can be improved too, by comparing its evaluations against
the observed rewards. The critic’ parameters 𝑤 are updated based on Equation 4.10, where 𝑠 and 𝑎
are the state and action at step 𝑡 + 1.𝛿 = 𝑟 + 𝛾𝑄 (𝑠 , 𝑎 ) − 𝑄 (𝑠, 𝑎)𝑤 ← 𝑤 + 𝛼 𝛿 ∇ 𝑄 (𝑠, 𝑎) (4.10)

Other Methods
In the interest of conciseness, here we group some other relevant gradient-based algorithms. A big
other category of algorithms is off-policy, which can be using any past experience to learn (i.e., learn
from replay buffer). The replay buffer contains actions taken by an older policy, which may improve
exploration.

Other relevant and well-known algorithms are A3C and A2C [89], DPG [111], DDPG [69], D4PG [7],
TRPO and PPO [108], ACER [132], SAC [36], TD3 [31], SVPG [71] and IMPALA [25]. An exhaustive
review of all these gradient-based RL algorithms can be found at [134].
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4.1.5. Performance of Gradient-Based RL
Gradient-based reinforcement learning has been particularly useful in computer vision-based robot
control. End-to-end control by a visual input, i.e., returning an action based on visual input, is a high
dimensional optimization problem. Some of the networks have millions of parameters, which is the
primary reason for gradient-based RL in the field. Evolutionary robotics approaches for deep neural
networks are emerging, but have generally resulted in limited success over the past decade.

Different game environments are used to benchmark the performance of RL algorithms. Possibly
the most famous are the Atari environments [88] (Figure 4.1). From the raw, high-dimensional, sensor
input, the agent learns to optimize the score in the game. Some environments can be solved, reaching
the last level for instance, while others have an infinite maximum score.

Most of the progress in RL has been achieved in simulation environments. RL algorithms are pow-
erful in simulation, though their performance in real experiments is limited due to the sim2real gap.
Especially end-to-end control by visual inputs is challenging. An area where RL has been really suc-
cessful is low-level control, replacing optimal control strategies.

Figure 4.1: Atari game environments [88].

4.2. Neuroevolution
Neuroevolution has key properties that are unavailable to gradient-based RL algorithms. In the gradient-
free neuroevolution, a population of solutions is optimized through evolutionary algorithms. The primary
advantages over gradient-based optimization are greater exploration of the solution space and massive
parallelization. As considered in Section 4.1, a disadvantage is that classic neuroevolution performs
poorly with very large networks.

4.2.1. Classic Neuroevolution
The inspiration for neuroevolution comes from nature, where creatures evolve over generations. Ge-
netic algorithms (GA’s) are deployed in classic neuroevolution, with the goal to optimize the weights of
the network. The vector containing all weights of the network is also referred to as decision vector in
this optimization problem.

Genetic Algorithms
A genetic algorithm can optimize a neural network according to the following steps:

1. Evaluation: all decision vectors in the population are evaluated over the same conditions, arriving
at a score for each decision vector.

2. Selection: the decision vectors are ordered in ascending order, based on fitness (if higher is
better). Out of a population with size 𝜇, 𝜆 individuals are selected for reproduction. Some GA’s
simply chose the top 𝜆 vectors for reproduction, though a roulette scheme is fairly common too. In
the roulette case, the probability for each vector 𝑖 to survive is equal to: 𝑃(𝑖) = ( ) min( )∑ ( ( ) min( )) .

3. Crossover: Now 𝜆 individuals are left after selection, which will be parents for the next generation.
This ’mating’ between parents, is known as crossover. Different crossover methods are known,
such as k-point crossover, uniform crossover or exponential crossover.

4. Mutation: Before concluding this generation, all decision vectors are mutated. Again, a vari-
ety of mutation strategies has been proposed, with Gaussian mutations as a popular choice for
neuroevolution. For each gene, with a probability 𝑃 , a Gaussian random value is added to the
gene.
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As is hopefully clear now, in neuroevolution actions are not necessarily coupled to a reward. By
contrast, at least an entire episode is evaluated on fitness, but usually even more episodes are com-
pared for a more thorough evaluation. Even such a simple GA can optimize a neural network with
impressive results.

NEAT
An additional advantage of neuroevolution is that the optimization space is not limited to the weights
of the network, the topography can be optimized too. An algorithm known as NeuroEvolution of Aug-
menting Topologies (NEAT [121]). NEAT proposed a method to crossover different topologies, as it
was previously unknown how to do so.

We leave the full derivation of NEAT for the interested reader in [121], but provide a brief overview of
the key principles. Similar to the equivalent in biology, in neuroevolution, a distinction is made between
phenotype and genotype. A genotype is the genetic representation of a network, the DNA for a creature.
At the same time, the phenotype is a physical description of the creature, or in neuroevolution, the actual
network.

So far we have assumed a constant network topography, making the genotype a vector containing
all weight in the network. Now that the topography is varied too, the genotype needs to contain the
topography too.

Figure 4.2a shows an example of genotype and phenotype in NEAT. The node genes define the
nodes in the network, while the connections define all edges in the graph. They also contain an inno-
vation number, which identify the historic ancestor of that gene, which will later be used in crossover.

(a) NEAT encoding of a network, containing node and
connection genes. Every connection gene also contains
an ’innovation number’, that is later used in crossover.

(b) NEAT mutate, adding a connection or node. When a
node is added (node 6 here), NEAT makes sure the to-
tal weight from node 5 to 3 remains unchanged. Finally,
NEAT can mutate by removing connections.

(c) NEAT crossover, connections are aligned based on their ’in-
novation number’, referring to their historic ancestor.

Figure 4.2: Neat evolutionary strategy.

Figure 4.2b shows a mutation in NEAT. NEAT can either mutate an existing connection, or add a new
one. An existing connection can be mutated similar to described above with, for instance, Gaussian
noise. NEAT can also add a connection between two existing nodes, initializing the edge with random
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weight. Finally, it can add a node in between two previously connected nodes, making sure to keep the
total weight between the two previous nodes the same (node 3 and 5 in the example).

As a final building block in NEAT, the crossover strategy takes care of something referred to as
’competing conventions’. In nature, strings of DNA/genomes are not just randomly aligned, they are
sorted based on property before creating offspring. Based on this principle, it aligns the genomes based
on innovation number, i.e., their historical marking. This strategy creates far more sensible networks,
as compared to randomly crossing over genes, and is a great contribution in NEAT.

4.2.2. Novelty Seeking
As mentioned earlier, the greatest asset of neuroevolution is its ability to explore the solution space in
great depth. However, even within neuroevolution exploration may be improved. As diversity drives
innovation within the solution space, and many biologists agree it has been key in the development of
human intelligence, it may help to improve neuroevolution performance too.

Early works focused on enabling diversity in the parameter space, i.e., diversity in the genetic space.
The problem with this approach is that two distant networks may behave very similarly. In [63], the
authors attempted to quantify different behavior between genomens, instead of its difference in the
genetic space.

Figure 4.3: Two mazes tested in [63], left: ’medium’ map, right ’hard’ map. The hard map could only be solved by seeking novelty
instead of a fitness function. The larger circle is the starting position, while the smaller dot is the target position.

The maps shown in Figure 4.3 were used to compare a novelty-driven approach to a fitness-based
approach. In the fitness-based approach, the fitness function is computed based on the final distance
to the goal, defined by 𝑓 = 𝑏 − 𝑑 . Here fitness function 𝑓 is equal to a bias 𝑏 , subtracted by the
distance from the robot’s final position to the goal.

When seeking novelty, on the other hand, sparseness in the behavior space is sought after. The
general formulation for this sparseness 𝜌 at a point 𝑥 is given by Equation 4.11.

𝜌(𝑥) = 1𝑘 ∑dist (𝑥, 𝜇 ) (4.11)

Hereby 𝜌(𝑥) is the average behavioral distance of 𝑥, as compared to its 𝑘 nearest neighbors. 𝜇 is
the 𝑖th-nearest neighbor.

A relevant question now is how to describe novelty in a specific application? In the case of the
mazes of Figure 4.3, dist (𝑥, 𝜇 ) is defined as the euclidean distance between 𝑥 and 𝜇 ’s positions
at the end of their runs. In this application, the end position vector (𝑥, 𝑦) is taken as a proxy for the
behavior of the agent.

It might seems strange that a method solely seeking novelty outperforms a fitness-based strategy.
The authors explain the superior performance by the concept of deceptive gradients. Even though
neuroevolution does not necessarily use gradients to optimize its parameters (i.e., backpropagation), it
still has to deal with local optima. Especially in harder tasks, many local optima exist that are incapable
of solving the task. For instance, continuously flying forward may yield superior performance, as
compared to random actions. Finding a (more complex) strategy that can outperform the forward
network may not be easy, risking an entire forward population.

The stepping stones towards the global optimal solution may be very weak solutions, which may be
the reason why novelty seeking neuroevolution can lead to high-performance solutions.

4.2.3. Indirect Encoding
The DNA-based genetic code in humans contains about 30,000 genes (or 3 billion base pairs). While
still a lot, it is far less even compared to just the 100 trillion connections in our brain. Somehow our DNA
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is a very efficient encoding of information, storing a tremendous amount of data in only about 30,000
genes. Each gene or pair of genes often represents a certain property, like colour of the eyes or hair.
The same holds for the brain, with genes representing certain personality traits.

Taking this concept to neuroevolution, it may be non-optimal to quantify each connection and its
properties directly in the genome. Instead, we may prefer indirect encoding of the network, dramatically
reducing the solution space of the problem. A popular indirect encoding method uses compositional
pattern-producing networks (CPPNs) [122]. CPPNs are a variation of ANNs, only now a wider variety
of functions can be used, such as sinusoidal functions and many more complex activation functions.
Usually they at least have a coordinate input (𝑥, 𝑦), and sometimes parameters like 𝑑, the distance to
the center of an image. Constructing images is one of the key applications of CPPNs, but they are very
useful in neuroevolution too.

In an algorithm referred to as HyperNEAT [123], the CPPN generates a pattern of weights for the
network that actually performs the task. In other words, we use a CPPN network to encode the weights
of a higher dimensional neural network, as a function of the position of the edge in the network. We are
encoding connectivity as a function of geometry, inspired from nature, where an embryo is constructed
in a certain orientation using chemical gradients, making sure all parts grow in the correct position.

HyperNEAT has been successful by enhancing LSTM networks in natural language processing and
other tasks.

4.2.4. Meta Learning
Meta learning, also learning to learn, can further improve model performance and allow for design of
hybrid training strategies. Seeking comparison in nature, we can identify different ’loops’ of optimization.
The mating process in animals can be considered an evolutionary process, while inter-life learning is
more like a gradient-based learning method, based on experiences.

Inspired by this example from nature, researchers at Google have developed a hybrid solution for
image classification [99]. Their AmoebaNet was trained through conventional supervised learning,
while the topography of the network was evolved, optimizing parameters such as number of nodes and
type of layers. Before AmoebaNet, these were design choices made by humans, which explains the
superior behavior by AmoebaNet. Another advantage of a hybrid like this is that it allows for massive
parallelization, as each specific topography (or gene) can be trained on a separate GPU. Brute forcing
the topography would have lead to impractical computational effort.

Another exciting application of meta learning is tackling catastrophic forgetting, a well-known phe-
nomena in deep learning. While most animals have great talent for remembering and comparing mem-
ories, neural networks tend to ’forget’ previous experiences. When learning new experiences or labels,
previous experiences are typically forgotten, i.e., its performance is deteriorated. Neuromodulation of-
fers an outer loop that turns on plasticity only for a subset of the neurons, with the aim of limiting impact
on previous experiences. This means different tasks are primarily carried out in different parts of the
network, similar to in a human brain. While it has been attempted with an evolutionary process, it has
had limited success due to the high dimensions of the optimization problem.

4.2.5. Neuroevolution Success
Taking a step back, comparing the gradient-free neuroevolution and gradient-based reinforcement
learning algorithms, it seems like disagreement exists about the future of reinforcement learning. Ad-
vocates of gradient-based reinforcement learning believe neuroevolution is unsuitable for the high-
dimension solution space in the often vision-based RL, while neuroevolution specialists highlight the
greater exploration of the solution space and massive parallelization.

By experiments in the Atari environments [88], neuroevolution has proven to be competitive with,
or outperform gradient-based methods. The authors demonstrated that the algorithms are not only
competitive in performance, they also train faster thanks to better parallelization.

4.3. Multi-Agent
We have now established a broad overview of RL algorithms in both gradient-based and gradient-free
areas. For deployment in a multi-agent setup, another whole class of algorithms exist. In fact, thanks
to the recent surge of interest in multi-agent reinforcement learning, an enormous body of work exist.
Here, we provide a brief and selective overview of the different methods and refer the reader to more
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in-dept reviews on MA-RL [87, 95, 143].

4.3.1. Multi-Agent Framework
To identify the framework within which we can deploy our MARL solution, we first define the environment
as a Markov game [70]. A Markov game (Figure 4.4), is defined by a set of 𝑁 agents, all receiving a
rewards based on the set of actions by all agents. An interesting challenge in this configuration is
that the environment is now non-stationary. In a single-agent environment, a Markov environment is
assumed to be stationary. This changes in a multi-agent scenario, as the change in reward is no longer
uniquely caused by the agent’s own actions. It has to learn to perform optimally in a group.

Figure 4.4: Markov game [70] definition.

Given a Markov environment, different configurations exist in reward shaping:

• Cooperative Setting: the reward of each agent is equal, i.e., 𝑅 = 𝑅 = .. = 𝑅 . The agents co-
operate to maximize reward. A slight variation is to optimize for a team-average reward, allowing
for different rewards between agents, but with the final objective to maximize the final average
reward.

• Competitive Setting: agents compete to receive highest reward, often in a zero-sum scheme, i.e.,∑ ∈𝒩 𝑅 (𝑠, 𝑎, 𝑠 ) = 0.

• Mixed Setting: each agent is self-interested, may have different rewards. This also includes
teams of cooperative agents, that compete with other teams.

All categories contain a gigantic amount of contributions, so we focus on the most relevant category
for this work: the cooperative setting.

4.3.2. Gradient-Based MARL
IQL
IQL [129], also independent Q-Learning, might be the most simple approach to MARL. Each agent
is treated as an independent Q-Learning agent, making the other agents a part of the environment,
attempting to optimize a joined reward. This usually doesn’t work very well with DNNs, which led to
Distributed Q-learning [61]. In Distributed Q-learning, all agents have a full observation of the system,
only lacking the other agents’ actions.

Fully Observable Critic
The non-stationary environment in MARL is one of its greatest challenges. It can be advantageous
for each agent to only have access to its own state, when communication is unavailable for instance.
In a fully observable critic algorithm, the actor only sees its own states and actions, while the critic
approximates the value function based on the states of the entire environment and all agents. A well-
known example of fully observable critic is MADDPG [78].

Value Function Factorization
Central RL approaches, with one policy controlling all agents, have yielded unsatisfying results. The
main issue is that many times some agents get ’lazy’ and do not contribute to the reward. Value function
factorization may improve performance, assigning each agent a distinct part of the joint reward. It can
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be hard to determine how much every agent contributed to the join reward function, numerous methods
were proposed. They can be divided into two classes, being difference rewards [2] and potential-based
reward shaping [94].

In difference rewards, the contribution by agent 𝑖 can be described by �̂� = 𝑟 − 𝑟 , where 𝑟 is
the global received reward and 𝑟 the contributions by all agents expect 𝑖. In potential-based reward
shaping, 𝑟 is replaced by 𝑟 + Φ(𝑠 ) − Φ(𝑠), where Φ(𝑠) describes the user-defined desirability for an
agent to be in a state 𝑠.

So, difference rewards are fairly similar to team-averaged rewards with individual rewards, while
potential-based methods evaluate a specific state. A large amount of (complex) value function factor-
ization functions exist, which are described in depth in [95].

Consensus
In an all-to-all communication network, each agent has access to the state and actions of the other
agents. A drawback of this configurations is that it greatly increases the volume of information, which
may overwhelm the capacity of the policies. Even if we can use a network with greater capacity, training
will be longer and more unstable. Hence, in consensus-based MARL agents only receive information
from a certain number of neighbors, reducing the information flow. Agents optimize actions mostly on
their individual optimal actions.

Learning to Communicate
In a consensus-based algorithm we hand-design the messages and their destination, which is likely
suboptimal, it becomes a hyper parameter. When learning to communicate [53], the agents learn to
compose a message, as well as their destination and if they want to send a message at all. Again, in
many different algorithms, this approach has been shown to be successful.

4.3.3. Gradient free MARL
Gradient free neuroevolution MARL may have less recent work, but is certainly a promising strategy
for challenging multi-agent problems.

Multi-Component ESP
Coevolution is when two or more individuals are evolved in the same environment through parallel
evolutionary processes. In a cooperative setting, the joint reward is equally distributed between agents,
with a separate decision vector and policy for each agent. Similar to the gradient-based deep-RL case,
it is beneficial to coevolve a solution as compared to one larger and higher dimensional solution.

Enforced SubPopulations (ESP) takes coevolution a step further, evolving parts of a neural network
in separate evolutionary processes. Multi-Component ESP extends ESP to evolve a team of agents,
evolving each network as an ESP. The team’s reward is shared among the entire team, which is, similar
to in gradient-based RL, a challenge, as the environment is now non-stationary. ESP-based solutions
have been demonstrated in the predator-prey environment in [87], comparing performance with different
forms of communication. The authors showed communicating agents with a shared reward is the
optimal configuration in the predator-prey problem.

Social Learning
Up to now each agent was trained independently based on its observations of the environment. An
alternative strategy is to deploy a teacher-student model, where high-performance individuals teach
lower performance individuals based on their observations and actions. During its lifetime, a students
learns from a teacher, after which they are evaluated for the evolutionary outer loop.

All the teacher’ actions are assumed to be correct, which is its main weakness. A superior individual
may not always perform optimal actions, possibly teaching the student wrong actions. Additionally, a
teacher-student model increases the risk of converging to a local optima.

Egalitarian Social Learning (ESL) [87] is an alternative to the student-teacher model, sub dividing
the population in subcultures. Agents can only learn from other agents in the subculture, created at the
start of each generation. Actions are only used if it satisfies the user-defined acceptability function that
filters out poor actions.
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4.4. Applications to GSL
Although little RL-based GSL robots have been deployed in real-world experiments, plenty simulation
experiments were established. First in [9, 59], later in [19, 46, 47, 133], RL-based GSL was explored.

[9] evolved continuous-time recurrent neural networks (CTRNNs) [8] for chemotaxis. CTRNNs are
modeled as a system of ordinary differential equations, with neuron potential as the dependent variable,
as presented in Equation 4.12.

𝜏 𝑑𝑦𝑑𝑡 = −𝑦 + 𝑓 (𝛽 + ∑∈ 𝑤 𝑦 ) (4.12)

Here 𝜏 is the time constant for neuron 𝑖, 𝑦 the potential for neuron 𝑖, 𝑓 the activation function for
neuron 𝑖, 𝛽 the bias of neuron 𝑖 and finally, ∑ ∈ 𝑤 𝑦 the sum of all inputs from neurons 𝑗 into neuron𝑖.

[59] synthesized the silkworm moth behavior by using living silkworm moth sensors and a recurrent
neural network (RNN) for GSL. Using an evolved RNN with just eight neurons (Figure 4.5), the authors
achieved behavior similar to that of a silkworm moth. The plume was modeled as a probability function
within a trapezoid shape, giving higher probability of detection closer to the source.

(a) Simulation path for the evolved
RNN. The simulator deploys a prob-
ability function within a trapezoid-
shaped area, with higher detection
probability close to the source.

(b) Trace of robot experiment tracing
phermone gas, showing behavior sim-
ilar to a silkworm moth.

(c) RNN trained by GA for GSL.

Figure 4.5: Synthesised moth from [59] performing GSL using two living sensors from a moth.

This work lacks thorough analysis of behavior and robustness, and the test environment is simplis-
tic, small and without any obstacles. Even though it has shortcomings, it is the only RL-based GSL
demonstration in real robot experiments.

[46, 47] are not typical robotics works, but rather contribute in the neuroscience and biology fields.
[46] investigates learning multiple tasks, walking and chemotaxis, with a single RNN. [47] aims to model
klinotaxis, a subset of chemotaxis, through a minimalistic neural network.

More recently in [19], an evolutionary robotics approach to GSL was demonstrated using CTRNNs.
The authors show simulation results based on a non-holonomic vehicle with two wheels, which can
only move forward. Four source features were designed, being composed of the wind vector, chemical
reading and chemical gradient. The behavior of the RNN, even in turbulent conditions, is robust. The
authors analyze the behavior and implement a finite state machine with similar behavior. The network
is also capable of source declaration. The main shortcomings in this work are the lack of obstacles and
robot experiments.
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Finally, [133] implements a MARL approach for GSL. It implements a strategy-sharing algorithm in a
large-scale advection-diffusion simulated plume environment. The authors demonstrate the effective-
ness of group actions and strategy sharing, as it leads to higher fitness/rewards in their experiments.

Taking a step back, only [59] demonstrated robot experiments for a simple RL-based GSL strategy.
The test area was incredibly small and analysis was incomplete, leaving us without a proof of concept
for RL-based GSL in the real world. On a more positive note, RL-based strategies have proven to lead
to high-performance solutions in simulation, which may eventually be transferred to the real world. It is
uncertain what the impact of the sim2real gap will be on real-world performance.





5
Gas Modelling

This chapter provides a highly selective overview of the existing methods for gas modelling and the
existing software tools. Ultimately we expose a need for randomized and complex GSL environments,
with high-accuracy gas modelling. This chapter only contains selected topics in the interest of brevity.
The reader is referred to an exhaustive review on dispersion modelling [40] if a deeper understanding
in desired. We review Gaussian plume models (Section 5.1), advection and diffusion (Section 5.2),
software (Section 5.3) and data sets (Section 5.4).

5.1. Gaussian Plume Models (GPM)
Gaussian Plume Models (GPM) [141] are most commonly used thanks to their small computational
footprint and simplicity. The most simple form, which was first introduced in Section 2.2, models the
plume as an expanding Gaussian curve in 3D space (Figure 2.5). With increasing distance downwind,
the standard deviations 𝜎 , 𝜎 increase, creating a flatter Gaussian curve with the same surface area
(i.e., the same amount of gas).

Though not applied in any GSL works, Gaussian-based approaches have been adopted for flow
around objects [141]. A shortcoming is that the Gaussian-based approaches are designed for a specific
shape of objects, such as a 3D cube. Another major shortcoming is the lack of stochastic behavior. In
a bare implementation of a GPM, gradient-following may lead to an efficient solution to the GSL task.

GPM’s are used for source term estimation (STE) on mobile robots, as it easily run on-edge. It has
been successful mostly in large open spaces, where obstacles are not an issue and measurements
can be averaged or filtered.

5.2. Advection and Diffusion
Advection and diffusion are in the core of the most high-performance gas modelling approaches. The
intuitive idea is to generate a flow field for a given environment, and release particles, also filaments,
to predict gas concentration.

The governing equations for advection were introduced in Section 2.2, Equation 2.2 described the
basic idea. The position of a particle at the next timestep can be predicted by the sum of a deterministic
term and a stochastic term. The deterministic term carries the particle along the wind vector, while the
stochastic part adds a Gaussian distribution to model the stochastic behavior of gas. Diffusion means
the particles are expanded over time. Note that a particle, also referred to as a filament, is not the same
as a molecule, it contains many molecules.

5.2.1. Computational Fluid Dynamics (CFD)
Computational Fluid Dynamics (CFD) is the leading method to model flow around objects with high
accuracy. The user defines boundary conditions of the environment, along with a solver of choice.
Boundary conditions may be inlets,outlets or walls. By far the most well-known open source CFD
software is OpenFOAM [48], accommodating a variety of solvers, boundary conditions and meshing
tools. This section reviews CFD based on OpenFOAM examples.

31
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Meshing
CFD sub-divides the environment into separate cells, to eventually iteratively solve the system of equa-
tions. Meshing an environment can be a remarkably time-intensive task, as it has great impact on the
final solution. Human designers normally tweak the mesh based on their experience.

OpenFOAM’s SnappyHexMesh tool takes trisurfaces as input, i.e., objects defined as a set of trian-
gles such as CAD .stl files. It first intializes a mesh with even, relatively large, cells. It then iteratively
adds smaller cells close to the object, as visible in Figure 5.2. The final step, after reaching the state
of Figure 5.2, is to remove the cells that lie in the model.

Figure 5.1: Rocket CFD by SU2 software [22].
The numerical cells get smaller for higher gradi-
ents of Mach Number.

Figure 5.2: SnappyHexMesh in OpenFOAM [48]. SnappyHexMesh first
divides the space into a square grid, and iteratively adds smaller cells to-
wards the objects. In the final stage (not displayed here), the cells inside
the object are removed.

The rationale is that closer to a surface higher gradients exist, hence smaller cells are required to
maintain accuracy. Figure 5.1 shows an example of a super sonic rocket, with increasingly smaller
cells with higher gradients, especially close to the tip of the rocket.

OpenFOAM’s SnappyHexMesh is demonstrated here as an example, though many variants exist,
generally with the same goal of more accuracy towards higher gradients.

Solvers
Again an enormous body of work exists on CFD solvers with different goals. We review an OpenFOAM
solver referred to as PimpleFOAM as an example of a solver typically used to generate a flow field for
gas dispersion modelling. PimpleFOAM is based on Reynolds-Averaged Simulation (RAS) k-epsilon
model [62]. This RAS k-epsilon model was designed specifically to model turbulent flow, the condition
that makes gas source localization so challenging.

The core of RAS k-epsilon is described by Equation 5.1.𝐷𝐷𝑡 (𝜌𝑘) = ∇ ⋅ (𝜌𝐷 ∇𝑘) + 𝑃 − 𝜌𝜖 (5.1)

Here 𝑘 is turbulent kinetic energy, 𝐷 effective diffusivity for 𝑘, 𝑃 turbulent kinetic energy production
rate and 𝜖 the turbulent kinetic energy dissipation rate. The intuitive idea behind this model is that
turbulent flow has turbulent kinetic energy, which is dissipated over time. Through another series of
equations the velocity in a specific cell can be derived. The PimpleFOAM sets up the system of equa-
tions as a numerical problem, and solves not only for velocity, but also for other parameters such as
pressure.

Boundary conditions
For the system of equations to be solvable, each surface will need to be assigned a boundary condition.
An inlet boundary condition defines a velocity vector on a specific surface, or even a set of velocity
vectors or function. The outlet may be modelled as a zerogradient boundary condition, forcing the
change of velocity to have zero gradient in direction perpendicular to the surface. It may be intuitive to
assume a forced wind vector on the outlet surface too, though this has two problems: 1) the size of the
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outlet vector is not equal to the inlet wind speed, if the outlet has a different size (mass conservation)
and 2) the outlet wind vector may differ over time. The second point can be disregarded if the flow is
incompressible, which is usually true for velocities under Mach 0.3 ( 103 m/s), and the inlet velocity is
constant.

Finally, the walls may be modeled as a ’noSlip’ boundary condition, setting the entire wind vector at
the patch to zero. Most intuitively, a wind vector can not travel inside a wall, as it is a solid structure.
Additionally, air is not allowed to slip at the wall patch, meaning that the flow velocity parallel to the
surface must be zero too. The layer of air just above the surface of a wall does move and has high
turbulence, but at the surface air can’t move.

5.3. Software
We review some of the software useful for developing GSL algorithms in simulation. Though these
are useful, many researchers still decide to develop their own tools due to the lack of complete (open
source) tools.

5.3.1. CFD
We already reviewed the OpenFOAM open source CFD toolbox, which is by far the most widely used
CFD tool in academia. OpenFOAM acts as a framework, used by researchers to build their own new
theory on top of, like CFD solutions for turbomachinery or rocketry.

By contrast, many commercial tools provide an out-of-the-box experience for specific applications.
ANSYS Fluent [44] is an example of commercial software for CFD, providing various computational
tool boxes from computational modelling. SimScale [112] is a commercial solution, adding a dedicated
GUI and cloud compute to their OpenFOAM simulation back-end. CFD is a very computationally ex-
pensive task, making cloud compute a useful addition. More CFD-based solutions exist, but ANSYS
and SimScale have previously been deployed in GSL contributions.

5.3.2. Pompy
PomPy is a NumPy-based implementation of a puff-based odour plume model, as described in [29].
Similar as to CFD-based gas dispersion models, Pompy models atmospheric dispersion in an open
field by releasing ’puffs’ in a wind field. Contrary to CFD-based models, Pompy computes the flow field
by a series of mathematical equations and colored noise. It is unable to model flow around objects.

Figure 5.3: Pompy simulation results for a plume
based on [29].

Figure 5.4: GADEN [90] pipeline for gas dispersion modelling. The ’Envi-
ronment Definition’ and ’Wind Simulation’ stage are to be provided by the
user, it is the input to the package.

5.3.3. GADEN
GADEN [90] is a ROS [120] package, capable of gas dispersion modelling and testing algorithms.
Looking at Figure 5.4, the ’Environment Definition’ and ’Wind Simulation’ stage are to be provided by
the user, it is the input to the package. GADEN’s user manual recommends using a combination of
CAD software and SimScale [112]. This approach is very labour intensive, as every testing environment
would have to be hand-designed.
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5.3.4. Software beneficial for GSL
While GADEN is a great tool, it misses the ’Environment Definition’ and ’Wind Simulation’ parts of the
pipeline. Pompy can’t deal with obstacles and data sets are too limited for exhaustive testing.

There is a need for a flexible and highly automated platform, capable of generating environments
and dispersion modelling. As compared to GADEN, automation is required for:

• Environment generation to CAD model: OpenFOAM needs a CAD model of the flow volume in
the environment.

• Meshing: OpenFOAM may start meshing based on the CAD file, though the instructions and
configuration needs to be automated.

• Boundary conditions: based on the preferences of user, boundary conditions need to be set. It
makes sense to add an inlet and outlet, as in most previous GSL work, though their position is
unclear in a complex environment. Boundary condition allocation will have to be done dynami-
cally.

• Solver: when running a computational method like CFD, conversion is not guaranteed. In fact,
engineers using CFD often experience a lack of convergence in complex tasks. An automated
CFD pipeline needs to be able to detect a diverging solver.

Such a pipeline is currently missing, but may make exhaustive testing and training of ML-based
algorithms far more effortless.

5.4. Data Sets
Data sets of real data may be useful to compare and test algorithms, as compared to simulation data
which may be over-simplified. Data can be recorded in two ways: 1) on a mobile robot, and 2) using
a grid of sensors. Both have the issue that measurements are depend on the sensor used, which
may impact readings substantially. When recording onboard a robot, more robot-specific phenomena
appear, based on the dynamics of the robot (i.e., a MAV will record radically different values compared
to a ground robot due to propellor inference).

In [119], a data set was created based on measurements of a robot with ’e-nose’. The authors then
learned models based on those measurements. In [42], the authors tested their approach based on a
data set provided in [102]. The data set, collected by COANDA R&D Corporation, was measured in a
recirculating water channel.

In [35] compared their gas mapping strategy against others by their own self-created data set of
their test environment. This work shows the main benefit of creating a data set: exhaustive testing and
comparison. Even with the same the same gas source, conditions might vary drastically in between
runs. The weakness of data sets is that they may not take into account the dynamic nature of gas,
especially when recorded on a mobile robot.
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Conclusion and Discussion

We have now arrived at the conclusion of this review. We have seen algorithms from different fields,
including the biology, probability and learning communities. We have reviewed the algorithms based
on their proven performance in different environments and discovered that testing was often limited. If
the authors reviewed their strategies in simulation, the size and complexity of the environment varies
significantly between contributions. The same holds for physical experiments, only now the robot and
sensors differ too. Obstacles were almost never considered in the experiments and simulations.

For a more systematic approach to GSL, we need a software platform for complex environment
generation and gas dispersion modelling. In that way, it will be possible to truly compare different
strategies. This will also benefit reinforcement learning algorithms, which have yielded promising re-
sults in independent simulations, but have not yet undergone exhaustive testing in real experiments. A
high-fidelity gas dispersion modelling platform is key in reducing the sim2real gap and hence the suc-
cess of reinforcement learning in GSL. MARL solutions to GSL are also understudied. We have seen
that single agents mimic creatures in some occasions, though it is yet to be discovered what behavior
a multi-agent configuration will yield.

We also need more testing on nano scale, so far only one work has contributed experiments on
a nano robot. Nano robots are uniquely equipped for GSL, as they are cheap and agile, though their
form factor imposes unique challenges. Price is important, as a major use case for these vehicles
is under-developed factories. Mostly factories in India and China with limited facilities have suffered
from severe gas leaks and deaths over the past decade, making only very cheap robots an option.
Nano robots, such as the Bitcraze Crazyflie, are orders of magnitude cheaper as compared larger
scale ground robots. Hence, nano robots should be considered as serious options. More research is
required to assess its feasibility, as currently only one study showed GSL on a nano drone, using a full
map of the environment and external positioning.

As in most fields of robotics, a continued debate is required to figure out the exact use cases for
gas-seeking robots. So far the success of robots in this problem has been very limited, especially fully
autonomous systems. By considering opinions from both academia and industry, the field may develop
in a way that is useful in emergency response.
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