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Variables and parameters notation

Variables and parameter notation Description
t = (t1, ..., tp )T p−dimensional vector

M = (mi j ) (p ×p)-matrices
PDS(p) class of positive definite symmetric matrices

Θ=Rp ×PDS(p) set of pairs θ = (t,C)
x1,x2, ... vectors in Rp

X1, X2, ... if underlying distribution is assumed
µ ∈Rp multivariate location parameter of an estimator
⌊x⌋ nearest integer less than or equal to x.

d 2(x;t,C) = (x− t)C−1(x− t)T mahalanobis distance

Table 1: Variables and parameters notation
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1
Introduction

Outliers are observations that deviate from the bulk of the data and they can distort the re-
sults of statistical analysis leading to incorrect conclusions if not addressed appropriately.
In real-world data, outliers occur frequently enough to require our attention. The reasons
for outliers are various, for example, instrument failure, non-representative sampling, for-
matting errors, and items that originate from different populations. Robust methods in
statistics are very useful because they can provide more reliable statistical analysis in the
presence of outliers.

The aim of any robust method is to reduce or remove the effect of atypical observations
and allow the remainder to primarily determine the results. Robust methods are partic-
ularly useful in multivariate analysis: in high dimensions, no graphical aid is available to
help with the outliers detection. For this reason, in such a setting a robust method does not
only assist with a more accurate analysis, not being affected by discordant observations,
but it can also facilitate the detection of outliers.

S-estimators are an example of a robust method. S-estimators of multivariate location
and covariance are statistical methods used to estimate the location and covariance pa-
rameters of a multivariate distribution. The aim of this research is to investigate the behav-
ior of S-estimators under different kinds of contamination by means of simulations with
the statistical package R. Contamination refers to the deliberate introduction of outliers or
abnormal values into a dataset. The primary objective of the simulations is to assess the
efficacy of S-estimators under diverse contamination scenarios, thereby evaluating their
performance.

In Section 2 the breakdown point, a measure of robustness, will be discussed. Section
3 introduces S-estimators starting with their original definition in a linear regression con-
text, whereafter a direct generalization to S-estimators of multivariate location and covari-
ance will be provided. Section 4 contains simulations and their results. Finally, section 5
presents a discussion of the obtained results with a particular focus on the performance of
S-estimators compared to other robust and non-robust methods.
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2
Breakdown point

With the aim of explaining the robustness of S-estimators, it is necessary to introduce the
concept of the breakdown point. The breakdown point is a concept in statistics that refers
to the proportion of outliers or anomalous observations that a statistical estimator can tol-
erate before it fails to provide useful results. Specifically, the breakdown point is the largest
proportion of outliers that a statistical estimator can handle before it breaks down com-
pletely or produces grossly inaccurate results.

The breakdown point was invented by Hampel (1985), who gave a rigorous asymptotic
definition. Donoho and Huber (1983) introduced a simplified version that works on finite
samples. In this paper, we shall use the latter, namely:

Definition 2.1 (Breakdown Point for a location estimator). Let X be a sample of n data
points x1, . . . ,xn ∈Rp and tn ∈Rp a location estimator of the parameter vector θ.
Let β(m,tn , X ) be the supremum of ||tn(X )−tn(X ′)|| over all corrupted samples X ′ where m
of the original points of X are replaced by arbitrary values. Then the breakdown point of tn

at X is given by:

ε∗n(tn , X ) = min
1≤m≤n

{m

n
;β(m,tn , X ) is infinite

}
. (2.1)

To get a better understanding of this concept here follow two examples of low and high
breakdown point estimators for location, respectively.

Example 2.1 (Sample Mean). Let X be a sample of n data points x1, . . . , xn ∈ R and denote
the sample mean by tn ∈ R. Substitute xn , with an arbitrary value, say y ∈ R. Then the
contaminated sample X ′ becomes (x1, x2, . . . , xn−1, y). Let y → ∞, then the sample mean
given by

tn(X ′) = 1

n

[(
n−1∑
k=1

xk

)
+ y

]
→∞.

Hence within the univariate setting, for the sample mean even one outlying observation
can cause breakdown, thus ε∗n(tn , X ) = 1/n which tends to 0 for large values of n.

Example 2.2 (Sample Median). Let X = (3,5,9,12,23) be a sample of 5 data points in R and
denote the sample median by tn ∈R. Since the observations are sorted in ascending order,
the sample median, defined as the middle point of the data, is given by: tn(X ) = 9. Now,
suppose we arbitrarily alter or replace 2 of the 5 observations. We do this by selecting any 2
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6 2. Breakdown point

observations and replacing them with an arbitrary value, say y ∈ R. Without loss of gener-
ality, assume we replace the first 2 observations. The sample becomes X ′ = (y, y,9,12,23).
Now let y →∞, then the sample in ascending order is given by X ′ = (9,12,23, y, y), and so
the sample median will be tn(X ′) = 23. Note that in this case, the contamination may alter
the estimated value (that depends on the choice of the two observations that we replace).
However, it still gives a value close to the center of the data without becoming infinitely
large. If we were to substitute 3 of the 5 observations with an arbitrary value, y ∈ R, and
let y →∞, then the sample median would tend to infinity and break. This shows that the
sample median in this example has breakdown point given by: ε∗n(tn , X ) = 3/5. Since the
sample median lies always in between x(n/2) and x(n/2+1) for a sample of n observations in
ascending order, the breakdown point of the sample median is given by:

ε∗n(tn , X ) = ⌊(n +1)/2⌋
n

,

which tends to 0.5 for large values of n.

It is important to take into consideration that the breakdown point for a location esti-
mator is reached by taking the estimator to the boundary of the parameter space, which
for the location is infinity. For a scale estimator, there are two boundaries, namely 0 and
infinity, hence the following definition:

Definition 2.2 (Breakdown Point for a covariance estimator). Let X be a sample of n data
points x1, . . . ,xn ∈Rp and Cn ∈ PDS(p) a covariance estimator. Let γ(m,Cn , X ) be the supre-
mum of D(Cn(X ),Cn(X ′)) over all corrupted samples X ′ where m of the original points of
X are replaced by arbitrary values, where

D(A,B) = max
{|λ1(A)−λ1(B)|, |λp (A−1)−λp (B−1)|} ,

for λ1 and λp being the smallest and largest eigenvalues, respectively. Then the breakdown
point of Cn at X is given by:

ε∗n(Cn , X ) = min
1≤m≤n

{m

n
;γ(m,Cn , X ) is infinite

}
. (2.2)

Once again here follow two examples of low and high breakdown point estimators for
covariance, respectively.

Example 2.3 (Sample Variance). With the same setting as in Example 2.1 denote the sample
variance by Cn ∈ PDS(1). Let y →∞, then the sample variance given by

Cn(X ′) = 1

n −1

[ ∑
x∈X ′

(x − x̄)2

]

= 1

n −1

[ ∑
x∈X ′

(x2 −2xx̄ + x̄2)

]

= 1

n −1

[( ∑
x∈X ′

x2

)
−2x̄

∑
x∈X ′

x +nx̄

]

= 1

n −1

[( ∑
x∈X ′

x2

)
−nx̄

]
→∞

(2.3)
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as by Example 2.1, where x̄ is the sample mean of the contaminated sample X ′. Once again
one altered observation causes breakdown of the estimator. As a result, ε∗n(Cn , X ) = 1/n,
which tends to 0 for large values of n.

Example 2.4 (Median of absolute deviation). Let X = (1,2,3,4,5) be a sample of 5 data-
points inR and denote the median of absolute deviation by Cn ∈ PDS(1). Then Cn is defined
by

Cn(X ) = median(|xi − x̃|),

where x̃ is the median of the original sample and xi is the i -th observation of the sample
X . So Cn(X ) = median(2,1,0,1,2) = 1. Now, suppose we alter the last of the 5 observa-
tions by an arbitrary value y ∈ R then the sample becomes X ′ = (1,2,3,4, y) and Cn(X ′) =
median(2,1,0,1, |y −3|) = 1 fon any y ∈ R, hence no breakdown is caused. But suppose we
alter the last 2 of the 5 observations by an arbitrary value y ∈ R then the sample becomes
X ′ = (1,2,3, y, y) and Cn(X ′) = median(2,1,0, |y −3|, |y −3|) = 0 for y = 3, hence breakdown
is caused. We conclude that the breakdown point is 2/5. In a general setting:

ε∗n(Cn , X ) = ⌊n/2⌋
n

,

which tends to 0.5 for large values of n.

2.1. Maximum breakdown point
After observing the breakdown point for two different location estimators, the natural ques-
tion is: is there an upper bound for location estimators? And if so can this upper bound ac-
tually be attained? Well, the answer in general is no. Consider a location estimator given by
tn(X ) = c ∈ R for all possible samples X of n observations x1, . . . , xn ∈ R, such an estimator
has breakdown point 1 as we can replace the whole sample X with arbitrary values and still
have location estimate given by tn(X ) = c. Clearly, this estimator is not a sensible choice
as in most cases it will fail to provide significant results. It is therefore crucial to pursue
alternative estimators that are more likely to produce meaningful outcomes.

The natural option for such a choice is an equivariant estimator. An estimator is said to
be equivariant with respect to a transformation T if applying T to the data and then esti-
mating the parameter with the transformed data is equivalent to estimating the parameter
with the original data and then applying the transormation T to the estimate. The kind of
transformation determines the type of equivariance. Most relevant equivariances to this
study are the translation equivariance and the affine equivariance.

Definition 2.1.3 (Translation equivariance for a location estimator). Let X be a sample of n
data points x1, . . . ,xn ∈Rp and denote by tn(X ) ∈Rp a location estimate based on X . Then tn

is translation equivariant if tn(X +v) = tn(X )+v for all v ∈Rp where X +v = {x1+v, . . . ,xn+v}.

Definition 2.1.4 (Affine equivariance for both a location estimator and covariance). Let
X be a sample of n data points x1, ...,xn ∈ Rp and denote by tn(X ) ∈ Rp a location esti-
mate based on X and by Cn(X ) ∈ PDS(p) a covariance estimate based on the same sam-
ple, then tn(X ) and Cn(X ) are said to be affine equivariant if tn(AX + v) = Atn(X )+ v and
Cn(AX + v) = ACn(X )AT for all non-singular p × p matrices A and v ∈ Rp , where AX + v =
{Ax1 +v, . . . ,Axn +v}. If this property holds for an orthogonal matrix A, then we talk about
orthogonal equivariance.
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Lopuhaä and Rousseeuw (1991) discuss upper bounds for location estimators satisfying
various equivariance properties. In particular, a significant result is that the upper bound
for a translation equivariant estimator is given by ⌊(n+1)/2⌋/n. Obviously, since the class of
affine equivariant estimators is contained in the class of translation equivariant estimators,
the upper bound ⌊(n +1)/2⌋/n also holds for them. Considering high breakdown is often
associated with reliability and accuracy of estimation, it is interesting to look at the case
when this bound can be obtained.

Example 2.5 (Coordinate-wise median). Let X = (x1, . . . ,xn) be a sample of n observations
in Rp , p > 1. Let xi j be the j -th coordinate of the observation xi , 1 ≤ i ≤ n, 1 ≤ j ≤ p,
i , j ∈ Z. Denote the coordinate-wise median of the sample X by CWM(X ). Let T be a
transformation given by T (X ) = X + v for some v ∈ Rp , then the sample after the trans-
formation becomes T (X ) = (x1+v, . . . ,xn+v). Now we can observe that the coordinate-wise
median operation independently considers each coordinate of the vectors. In particular
the CWM(X ) = (median(x11, . . . , xn1), . . . ,median(x1p , . . . , xnp ). Let 1 ≤ j ≤ p be arbitrary,
denote the j -th coordinate of the coordinate-wise median of the transformed dataset by
CWM(T (X )) j then:

CWM(T (X )) j = median(x1 j + v j , . . . , xn j + v j )

= median(xi j , . . . , xn j )+ v j

= CWM(X ) j + v j ,

(2.4)

where v j is the j -th coordinate of the vector v. Since j was arbitrarily chosen (2.4) holds
that for all 1 ≤ j ≤ p, therefore the coordinate-wise median is translation equivariant. Since
the sample median as defined in Example 2.2 is also translation equariant and the CWM
can be computed coordinate-wise as the sample median, it holds that:

ε∗n(CWM, X ) = ⌊(n +1)/2⌋
n

.

In order to present results about upper bounds for affine equivariant estimators, it is
essential to introduce the following concept.

Definition 2.1.5 (General position). A collection X is said to be in general position if there
are no p +1 points contained in some hyperplane of dimension smaller than p. For exam-
ple, a set of points in general position implies that no three points are collinear (lie on the
same line) and no four points are coplanar (lie in the same plane).

Davies (1987) showed that for covariance estimators the bound ⌊(n + 1)/2⌋/n is not
sharp. When the collection X is in general position, if n ≥ p+1, the breakdown point of any
affine equivariant covariance estimator Cn , is at most ⌊(n − p + 1)/2⌋/n. Also in this case
it is interesting to find estimators actually attaining this bound. As we have seen in Exam-
ple (2.4) the median of absolute deviation attains the above-mentioned upper bound. The
class of multivariate S-estimators contains members that also attain this bound in higher
dimensions.



3
S-estimators

The estimator we will analyze in detail in terms of its robustness is the multivariate S-
estimator of location and covariance. S-estimators were introduced by Rousseeuw and
Yohai (1984) in a regression context, and defined as the solution to the problem of mini-
mizing σ subject to

1

n

n∑
i=1

ρ

(
yi −θT xi

σ

)
≤ b0 (3.1)

among all (θ,σ) ∈ Rp × (0,∞), where 0 < b0 < supρ. It is important to highlight that for ρ
defined by ρ(x) = x2, x ∈R, (3.1) becomes:

1

n

n∑
i=1

(
yi −θT xi

σ

)2

= b0 ⇔

σ2(θ) = 1

b0

1

n

n∑
i=1

(
yi −θT xi

)2
(3.2)

Hence minimizing σ2 of (3.2) over θ corresponds to the least square estimator by def-
inition. The problem with such estimators though is that for any outlier, meaning a sin-
gle point diverging significantly from the true mean, the estimator fails to deliver reliable
results as the distance between the points and the true mean is quadratically taken into
account with the minimization problem.

In order to obtain more robust estimates the function ρ was assumed to satisfy the fol-
lowing properties:

(R1) ρ is symmetric, has a continuous derivative ψ and ρ(0) = 0;

(R2) There exists a finite constant c0 > 0 such that ρ is non increasing on [0,c0] and con-
stant on [c0,∞).

The property (R2) ensures that points far from the true mean no longer contribute quadrat-
ically but only with a fixed amount. A specific choice of ρ, still satisfying (R2) will ensure
some accuracy. Here follows an example of a ρ-function satisfying those properties:

• a

9



10 3. S-estimators

Figure 3.1: Graph of ρ for c0 = 3 corresponding to least squares, minimum volume ellipsoid, and Tukey’s
biweight

• c0 tuned for low asymptotic variance →
low breakdown point

Example 3.1 (Tukey’s biweight).

ρB (y,c0) =


y2

2 − y4

2c2
0
+ y6

6c4
0

if |y | ≤ c0,

c2
0

6 if |y | ≥ c0

(3.3)

Its derivative is known as Tukey’s biweight function ψB (y,c0) = y(1− (y/c0)2)2
1[−c0,c0](y).

The biweight rho-function makes sure that a good level of accuracy is maintained up
to a certain distance from the mean by choice of the constant c0. Afterward, we will see
how such a constant can be chosen to acquire the largest possible breakdown point. It is
important to notice that Tukey’s biweight function is a good compromise between the least
squares estimator (ρ(x) = x2) and the one corresponding to the minimum volume ellipsoid
one as to be seen in Figure 3.1. The minimum volume ellipsoid estimator for multivariate
location and scatter (also known as MVE) is defined as follows:

Definition 3.1 (Minimum volume ellipsoid). Let X = (x1, . . . ,xn), n ≥ p +1, then the mini-
mum volume ellipsoid is given by the center and covariance structure of the ellipsoid with
minimal volume that covers at least h points of X , where h can be chosen between ⌊n/2+1⌋
and n. Because the size of an ellipsoid is determined by det(C) this definition can be refor-
mulate as follows: the minimum volume ellipsoid location estimator tn ∈ Rp and scatter
estimator Cn ∈ PDS(p) minimize the determinant of C subject to:

#{i : (xi − t)T C−1(xi − t) ≤ c0} ≥ h. (3.4)



11

Since Rousseeuw (1985) showed that the MVE is affine equivariant with breakdown point
(⌊n/2⌋−p +1)/n, which is smaller than the covariance upper bound ⌊(n−p +1)/2⌋/n, then
(3.4) is readjusted by Lopuhaä and Rousseeuw (1991) so that the MVE does attain this upper
bound:

#{i : (xi − t)T C−1(xi − t) ≤ c0} ≥
⌊

n +p +1

2

⌋
(3.5)

In this case the ρ function is defined by ρ(x) =1di>c0 , where di (xi ;t,C) is as in Table 1. Note
that in this case the constant b0 is given by:

b0 = 1− ⌊n+p+1
2 ⌋
n

which can be found by solving:

#{i : (xi − t)T C−1(xi − t) > c0} ≤ n −
⌊

n +p +1

2

⌋
= b0n

A direct generalization to S-estimators of multivariate location and covariance is ob-
tained by adjustment of (3.1).

Definition 3.2 (S-estimate). Let x1,x2, . . . ,xn ∈ Rp and let ρ : R−→ [0,∞) be a function satis-
fying (R1) and (R2). Then the S-estimate of multivariate location and covariance is defined
as the solution θn = (tn ,Cn) to the problem of minimizing det(C) subject to:

1

n

n∑
i=1

ρ
[{

(xi − t)T C−1 (xi − t)
}1/2

]
≤ b0 (3.6)

where the constant 0 < b0 < supρ can be chosen in agreement with an assumed underlying
distribution.

In particular, if x1,x2, . . . ,xn are assumed to be a sample X1, X2, . . . , Xn with an underlying
multivariate normal distribution with mean µ ∈Rp and covariance Σ ∈Rp×p then since we
aim to have tn ≈µ and Cn ≈Σ the constant b0 is chosen by:

b0 ≥ 1

n

n∑
i=1

ρ
[{

(xi − tn)T C−1
n (xi − tn)1/2}] (3.7)

≈ E
[
ρ

[{
(xi −µ)TΣ−1 (

xi −µ
)1/2

}]]
(3.8)

≈ E[
ρ(∥Z∥)

]
(3.9)

where (3.8) is due to the Law of Large Numbers (for large values of n) and Z in (3.9) is a
random vector with a p-variate normal distribution, with mean given by 0 ∈Rp and covari-
ance given by the identity matrix I ∈Rp×p . Note, however, that because of the property (R2)
b0 does not only depend on Z but also on the constant c0. Moreover, take into considera-
tion that for continuous ρ functions the minimization problem (3.1) is the same as the one
where the equal sign substitutes the inequality sign. An example of a ρ-function for (3.6) is
Tukey’s biweight function as in Example 3.1.



12 3. S-estimators

3.1. Breakdown point of S-estimators
A significant outcome of the paper by Lopuhaä and Rousseeuw (1991) is the upper-bound
for the breakdown point of S-estimators which is given by:

ε∗n(tn ,X) = ε∗n(Cn ,X) = ⌈nr ⌉
n

(3.10)

where X is a set on n ≥ p +1 points in general position in Rp and r = b0/supρ under the
assumption that r ≤ (n −p)/(2n) and ρ satisfies properties (R1) and (R2).

This result implies that the constant c0 of the property (R2) can be chosen such that the
breakdown point is maximized. In particular, since both b0 and ρ depend on c0, the latter
can be computed by solving:

n −p

2n
= b0(c0)

ρ(c0)
(3.11)

for large values of n. In this respect, it is very interesting to look at the asymptotic vari-
ance of the S-estimators, a measure of the variability of the estimator as the sample size
approaches infinity. In Lopuhaä (1989) (Section 6) the relation between asymptotic vari-
ance and breakdown point of the S-estimators is analyzed: it is given that in general for
any S-estimator the asymptotic variance will depend on the ρ-function. As a consequence,
the asymptotic variance depends on c0. Moreover, from (3.11) clearly, the constant c0 can
be tuned so that the breakdown point is maximized. To be noted as well from Lopuhaä
(1989) is that a constant c0 calibrated to have a high breakdown would correspond to a
high asymptotic variance, and analogously c0 tuned for a low asymptotic variance would
correspond to a low break down point. This shows that a drawback of the S-estimators is
that it is not possible to achieve small asymptotic variance and high breakdown point at
the same time.



4
Simulations

In statistical analysis, it is sometimes assumed that data follow a normal distribution. How-
ever, in real-world applications, data may be contaminated with outliers, which can affect
the accuracy of the statistical analysis.

Multivariate normal data refers to data that are distributed according to a multivariate
normal distribution. In the presence of contamination, the performance of S-estimators
can be evaluated using simulations. Simulation studies involve generating data from a
known distribution and adding contamination to the data to evaluate the performance of
statistical methods. Simulations can be used to evaluate the robustness of S-estimators
to various levels of contamination and to compare their performance to other statistical
methods. The simulations can also be used to assess the impact of different factors such as
sample size, number of dimensions, and type of contamination on the performance of the
S-estimators.

In this research, we will simulate multivariate standard normal data with different types
of contamination, to see how the S-estimators perform in different circumstances and com-
pare it to other robust and non-robust estimators, in particular, the sample mean and co-
variance, also known as classic estimator, as non-robust, and the minimum covariance de-
terminant (MCD), formally defined in Rousseeuw (1985), and the M-estimator, formally
defined in Maronna (1976), as robust. The MCD and M-estimator are chosen for compar-
ison, as by Maronna et al. (2006) the first has maximum breakdown point similar to the
S-estimator whereas the second has maximum breakdown point given by 1/(p +1) where
p is the number of dimensions. Since in multivariate analysis p > 1 it should theoretically
perform less well than the S-estimator in higher dimensions. All simulations will be per-
formed with the statistical package R. In particular, the estimators will be computed by
using the rrcov library.

In order to understand how the estimators perform, for each contamination setting 500
repetitions are conducted. At each iteration, values of the estimates for the location and
covariance matrix are stored. To assess the performance of the estimators three indicators
will be used:

• Location indicator: boxplot of a vector where the averages of all coordinates of the
estimated location vectors are stored;

• Covariance indicator (smallest eigenvalue): boxplot of a vector where the smallest
eigenvalues of the estimated covariance matrices are stored;

13
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• Covariance indicator (largest eigenvalue): boxplot of a vector where the largest eigen-
values of the estimated covariance matrices are stored.

The uncontaminated data is generated from the multivariate standard normal distribution,
with mean vector 0 in Rp and covariance matrix equal to the identity matrix in Rp×p . Since
the average of the coordinates of the true mean of the uncontaminated data is 0, the lo-
cation estimator will be assessed as performing well if the location indicator is centered
around 0. Although the covariance of the uncontaminated data is the identity matrix, to
determine how the estimator for the covariance performs it is necessary to look at both
largest and smallest eigenvalue of the estimated covariance matrix, as the estimator breaks
if either the smallest eigenvalue tends to zero, or if the largest eigenvalue tends to infinity.

4.1. Contamination by alteration of the mean vector
The original dataset is contaminated by replacing part of the data points with points gen-
erated by a contaminated distribution. Firstly, the latter is constructed by shifting all co-
ordinates of the mean zero vector over a fixed distance that varies over 25, 10, and 5. Also,
variation in contamination size will be performed for each level of mean shift. The simu-
lations are carried out on the basis of 5 different contamination levels, namely: 10%, 20%,
30%, 40%, and 45%. For proper comparison, the estimators have been computed for the
original dataset without contamination (0%) as well. Moreover, the dimension of the data
points has been taken as yet another factor. It will vary between 2, 5, and 10. The sam-
ple size was fixed to 100. The sample mean and covariance estimator was denoted by CL,
the S-estimator by S, the M-estimator by M, and the minimum covariance determinant by
MCD.

4.1.1. Mean shift of 25
The 1st simulation was carried out with contamination given by a mean shift of 25.

The plot in Figure 4.1.1.1 shows the location indicator for different levels of contami-
nation and different dimensions by a mean shift of 25. At dimension 2 all non-classic esti-
mators perform well. At dimension 5 a notable result is that from 40% contamination the
S-estimator breaks, as opposed to all non-classic robust estimators. At dimension 10 the
S-estimator presents the same behavior but already from 30% contamination. From 40%
contamination, all estimators fail to provide accurate estimates.

The plot in Figure 4.1.1.2 shows the covariance indicator (smallest eigenvalue) for dif-
ferent levels of contamination and different dimensions by a mean shift of 25. All estima-
tors estimate the smallest eigenvalue lower than 1, and the negative bias gets larger as the
dimension increases. From dimension 5 the S-estimator moves downwards again with a
very high percentage of contamination. The classic estimator is quite steady throughout
all levels of contamination and dimension size.

The plot in Figure 4.1.1.3 shows the covariance indicator (largest eigenvalue) for differ-
ent levels of contamination and different dimensions by a mean shift of 25. At dimension
2 all estimators but the classic one are reliable. At dimension 5 with 40% and 45% the S-
estimator presents very high values as opposed to MCD and M which perform well. At
dimension 10 the S-estimator performs poorly from 30% contamination onwards. MCD
and M-estimator are inaccurate as well from 40% contamination onwards.
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Figure 4.1.1.1: Location indicator by mean shift of 25
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Figure 4.1.1.2: Covariance indicator (smallest eigenvalue) by mean shift of 25
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Figure 4.1.1.3: Covariance indicator (largest eigenvalue) by mean shift of 25
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Figure 4.1.2.1: Location indicator by mean shift of 10

4.1.2. Mean shift of 10
The 2nd simulation was carried out with contamination given by a mean shift of 10.

The plot in Figure 4.1.2.1 shows the location indicator for different levels of contamina-
tion and different dimensions by a mean shift of 10. At dimension 2 the S-estimator present
a stretched boxplot with 45% contamination, so the estimator breaks, as opposed to the
other non-classic estimators. At dimension 5 the S-estimator breaks already with 40% con-
tamination whereas M and MCD still perform well. At dimension 10 the S-estimator breaks
with 30% contamination, MCD and M break from 40% contamination onwards.

The plot in Figure 4.1.2.2 shows the covariance indicator (smallest eigenvalue) for dif-
ferent levels of contamination and different dimensions by a mean shift of 10. The behav-
iors of the estimators are very similar to the ones registered previously. In this case, the
estimated value for the smallest eigenvalue starts from around 1 and decreases as the di-
mension size increases. At dimensions 5 and 10, the S-estimator moves downwards from
contamination levels of 40% and 30%, respectively.

The plot in Figure 4.1.2.3 shows the covariance indicator (largest eigenvalue) for differ-
ent levels of contamination and different dimensions by a mean shift of 10. At dimension
2 the S-estimator does not perform well with 45% contamination, as the center of the data
leans towards high values. Other non-classic estimators perform well. At dimension 5 the
S-estimator breaks from a contamination level of 40%, whereas MCD and M estimates are
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Figure 4.1.2.2: Covariance indicator (smallest eigenvalue) by mean shift of 10
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Figure 4.1.2.3: Covariance indicator (largest eigenvalue) by mean shift of 10
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Figure 4.1.3.1: Location indicator by mean shift of 5

still centered around the true value. At dimension 10 the S-estimator break from 30% con-
tamination, MCD and M estimators are inaccurate from 40% contamination onward.

4.1.3. Mean shift of 5
The 2nd simulation is carried out with contamination given by a mean shift of 5.

The plot in Figure 4.1.3.1 shows the location indicator for different levels of contam-
ination and different dimensions by a mean shift of 5. In this case, already at dimen-
sion 2 the S-estimator breaks from 40% contamination and the M-estimator at 45% con-
tamination whereas the MCD withstands all contamination levels. At dimension 5 the S-
estimator starts providing non-accurate estimates already with 30% contamination, other
non-classic estimators present the same results as for the previous dimension. At dimen-
sion 10 the S-estimator breaks already with 20% contamination, and in this case, both MCD
and M estimators fail to provide accurate results from 40% contamination.

The plot in Figure 4.1.3.2 shows the covariance indicator (smallest eigenvalue) for dif-
ferent levels of contamination and different dimensions by a mean shift of 5. Given this sce-
nario, the estimated smallest eigenvalue starts below 1 and it decreases with an increase in
dimension size. The estimate by S-estimator moves downwards at dimension 2 from 40%
contamination, and at dimension 5 from 30%. At dimension 10 all non-classic estimators
record a small fluctuation in estimate values. Again the classic estimator is the steadiest.
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Figure 4.1.3.2: Covariance indicator (smallest eigenvalue) by mean shift of 5
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Figure 4.1.3.3: Covariance indicator (largest eigenvalue) by mean shift of 5
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The plot in Figure 4.1.3.3 shows the covariance indicator (largest eigenvalue) for differ-
ent levels of contamination and different dimensions by a mean shift of 5. At dimension
2 the S-estimator breaks from 40% contamination, the M-estimator with 45%. At dimen-
sion 5 the S-estimator breaks from 30% contamination and the M-estimator still with 45%.
In both cases, the MCD estimator performs well. At dimension 10 the S-estimator does
not perform well from 20% contamination onwards, M and MCD estimators fail to deliver
accurate estimates from 40% contamination onwards.

4.1.4. Observations of contamination by mean shift
By putting the contamination far from the true mean the behavior of the location indicator
for the classic estimator is exactly as the one described in Example 2.1. In fact, the estima-
tor tries to adapt to the whole contaminated dataset. Analogously, the covariance indicator
(largest eigenvalue) for the classic estimator behaves as in Example 2.3. To be observed
as well is that the S-estimator’s ability to distinguish between uncontaminated points and
contaminated ones is less effective compared to the MCD in situations where the contam-
ination level gets higher or when the data dimensionality increases. This phenomenon
could be attributed to the subsampling algorithm used to compute the S-estimator. More-
over, the M-estimator exhibits significantly better performance than what was initially an-
ticipated. This might be due to the kind of contamination used, namely a shift from the
true mean. It could be possible that with a different contamination that causes implosion,
such as an extreme data point as in Example 2.4, the M-estimator would break at lower
levels of contamination. These particular behaviors of the S-estimator, the M-estimator,
and the MCD are observed for both location indicator and covariance indicator (largest
eigenvalue).

Furthermore, the performance and behaviors described above are to be observed in all
mean shifts, although they are amplified as the distance from the true mean gets smaller. In
particular, all non-classic estimators seem to be less capable to identify the contaminated
points the closer they get to the uncontaminated ones.

4.2. Simulations’ anomalies
Theoretically, the S-estimator should have a higher breakdown point than the M-estimator
and a similar one to the MCD. Although we see that the S-estimator generally performs
worst. Specifically, this fact is observed by the following settings:

1. Mean shift of 25:

• at dimension 5 with 40% and 45% contamination;

• at dimension 10 with 30% contamination.

2. Mean shift of 10:

• at dimension 2 with 45% contamination;

• at dimension 5 from 40% contamination;

• at dimension 10 with 30% contamination.

3. Mean shift of 5:
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• at dimension 2 from 40% contamination;

• at dimension 5 with 30% and 40% contamination;

• at dimension 10 with 20% and 30% contamination.

This finding leads to a deep analysis of the algorithms that the function CovSest() in the
rrcov library uses to compute the S-estimator. We do so by graphically comparing the be-
havior of three methods available to compute the S-estimator, namely the default method,
called sfast, and other two methods, called bisquare and rocke.

To understand the difference in estimation between the different algorithms it is essen-
tial to look deeper into how the algorithms are built in the first place.

4.2.1. Sfast method
The algorithm corresponding to the method sfast of the function CovSest() in the rrcov
library is a subsampling algorithm. It is based on the FAST-LTS algorithm of Rousseeuw
and Van Driessen (2006) and the SURREAL algorithm of Ruppert (1992). The algorithm of
the sfast method for multivariate location and scatter is based on modifying each candidate
to improve the S-optimality criterion as in (3.6) thus reducing the number of the necessary
sub-samples required to achieve desired high breakdown point with high probability.

4.2.2. Bisquare method
The algorithm corresponding to the method bisquare of the function CovSest() in the rrcov
library is an iterative process that uses the relation between S and M-estimators. In partic-
ular by Huber (1981):

Definition 4.1 (M-estimators). The M-estimate based upon x1, . . . ,xn ∈Rp is defined as so-
lutions of the simultaneous equations:

1

n

n∑
i=1

v1(di )(xi − t) = 0

1

n

n∑
i=1

{
v2(d 2

i )(xi − t)(xi − t)T − v3(di )C
}= 0,

(4.1)

where di = d(xi ,t,C) and v1, v2 and v3 are real valued functions on [0,∞).

Lopuhaä (1989) (Section 2.3) shows that the solution of the minimization problem (3.6),
which corresponds to the S-estimator, is also a solution of the simultaneous equations (4.1),
for v1(d) = w(d), v2(d) = pw(d), v3(d) = v(d) where ψ(d) = ρ′(d), w(d) =ψ(d)/d , v(d) =
ψ(d)d , with constraint (3.6). (4.1) can be rewritten as fixed points equations, namely:

t =
∑n

i=1 v1(di )xi∑n
i=1 v1(di )

C =
∑n

i=1 v2(di )(xi − t)(xi − t)T∑n
i=1 v3(di )

(4.2)

Note that a solution of the minimization problem of (3.6) must satisfy (4.2). A solution to
the fixed point equations (4.2) can thus be found iteratively by correcting in every iteration
the covariance estimator to satisfy the S-constraint (3.6).
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To understand how the iterative algorithm of the bisquare method works denote by t̂
and Ĉ the S-estimate for location and covariance, respectively, then since the local minima
of Ĉ are solutions of (4.1), a natural procedure to minimize Ĉ is as follows: assume we have
initial values t(0) and C(0) given by a high breakdown point estimate (generally minimum
volume ellipsoid estimate is chosen). Set iteration j to 0, then:

1. compute indexes j +1 from j ;

2. compute Mahalanobis distances d ( j )
i = [

(xi − t( j−1))T (C( j−1))−1(xi − t( j−1))
]1/2

3. compute k( j ) as the solution of the constraint equation (1/n)
∑n

i=1ρ(d ( j )
i /k( j )) = b0

4. replace d ( j )
i with adjusted distances d̄ ( j )

i = d ( j )
i /k( j )

5. compute the new location vector

t( j )
i =

∑n
i=1 v1(d̄ ( j )

i )xi∑n
i=1 v1(d̄ ( j )

i )

6. compute the new shape matrix

C( j ) =
∑n

i=1 v2(d̄ ( j )
i )(xi − t( j ))(xi − t( j ))T∑n

i=1 v3(d̄ ( j )
i )

7. if the change in C( j ) and t( j ) is below a given tolerance, return C( j ) and t( j )

where v = ψ. Moreover, the ρ function that this algorithm uses is the Tukey’s biweight
function of Example 3.1.

4.2.3. Rocke method
The algorithm corresponding to the method rocke of the function CovSest() in the rrcov li-
brary is an iterative algorithm similar to the one of the bisquare method. As starting values
for the iteration the minimum volume ellipsoid is chosen as default as a high breakdown
point. Because in Rocke (1996) it is shown that S-estimators in high dimensions can be
sensitive to outliers even if the breakdown point is set to 50%, the algorithm is designed to
down weight the influence of contaminated values by iteratively adjusting the weights as-
signed to observations. It does so by choosing a particular ρ function in (3.6) called trans-
lated biweight (or t-biweight) and by replacing the standardization step given in (3.6) with
a standardization step consisting of equating the median of ρ(di ) with the median under
normality, where di is defined as in Table 1. The specifics of the iteration are given in Rocke
and Woodruff (1996). Figure 4.2.4.2 gives confirmation of the better working of the rocke
algorithm in higher dimensions.
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Figure 4.2.4.1: Location indicator for sfast, bisquare, and rocke algorithm

4.2.4. Algorithms’ comparison
In order to assess the performance of the S-estimator computed with the different methods,
the location indicator as in the previous section is used as well as a new indicator given
by the boxplot of a vector in which the determinant values of the estimated covariance
matrix is stored at each iteration. With the latter, the performance will be assessed as good
if the indicator is centered around 1 as 1 would be the value of the true determinant. Note
that theoretically, the S-estimator has a maximal finite sample breakdown point given by
(n − p)/(2n) where n is the sample size, so with n = 100 and p = 10, this is exactly 45%.
Therefore we will omit the contamination level of 45%.

In Figure 4.2.4.1 the location indicator is computed among all different settings of the
mean shift, contamination level, and dimension. The contamination settings in which the
S-estimator by sfast method performs worse than MCD and M-estimator correspond ex-
actly to the ones in which the S-estimator by sfast method performs worst than the one
by bisquare and rocke methods, namely by a mean shift of 25 at dimension 5 with 40%
contamination and at dimension 10 with 30% contamination, by a mean shift of 10 at di-
mension 5 with 40% contamination, and at dimension 10 with 30% contamination, and by
a mean shift of 5 at dimension 2 with 30% contamination, at dimension 5 with 30% and
40% contamination, and at dimension 10 with 20% and 30% contamination.

In Figure 4.2.4.2 the covariance indicator (determinant) is computed among all differ-
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Figure 4.2.4.2: Covariance indicator (determinant) for sfast, bisquare, and rocke algorithm
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ent settings of mean shift, contamination level, and dimension. Also in this case we see the
same behaviors as with the previous indicator. To be noted, however, is that the S-estimator
computed with the rocke method performs better in higher dimensions than the one com-
puted with both the sfast and bisquare algorithms. This particular result can be seen very
clearly at dimension 10 with 40% contamination and by all mean shifts, and it is indeed
what we expected due to translated biweight function mentioned in Section 4.2.3.

4.3. Anomalous indicators’ behaviors
Throughout the simulations, it is to be seen that the S-estimator presents, in some specific
contamination settings, indicators (both for location and covariance) that are not symmet-
ric around the median but stretched. For example, by mean shift of 25 at dimension 10 with
contamination 30% we can observe stretched boxplots for the S-estimator in all indicators.

Figure 4.3.1: Location indicator for S-estimator by iteration number

In Figure 4.3.1 the location indicator by S-estimator is plotted against the iteration num-
ber of the simulation by mean shift of 25 at dimension 10 with contamination 30%. The
stretched behavior of the location indicator of Figure 4.1.1.1 is due to the fact that the S-
estimator estimates roughly half of the time a value close to the true mean and half not.
The S-estimator was computed by means of the sfast algorithm, which is a subsampling
algorithm.
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Conjecture 4.1 (Sfast algorithm). The sfast algorithm is not capable of recognizing the con-
taminated points which explains why the optimal subsample returned has roughly half of
its points within the contaminated data and half within the uncontaminated data.

Unfortunately, the rrcov library does not offer the possibility of viewing the optimal sub-
set to be able to confirm the previously mentioned hypothesis. In order to be able to have
a confirmation we looked at the behavior of the MCD estimator, as it is also computed by
means of a subsampling algorithm and the library rrcov offers the possibility to extract the
optimal subsample. As we can see from Figure 4.1.1.1, Figure 4.1.1.2 and Figure 4.1.1.3 at
dimension 10 and 40% contamination the indicators corresponding to the MCD estima-
tor are stretched. So we fixed that specific contamination setting and plotted it against the
whole set.

Figure 4.3.2: Optimal MCD subsample

Figure 4.3.2 shows in red the points of the optimal MCD subsample and in black the
contaminated dataset as computed in Section 4.1. It is very clear that the subsampling al-
gorithm is not capable of recognizing the contaminated points returning a subsample that
picks, as expected, roughly half of the points from the uncontaminated data (left bottom of
the plot), and roughly half from the contaminated one (right top of the plot).
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Conclusions

This study focused on the robustness of S-estimators and explored their behavior in differ-
ent scenarios by means of a simulation study. We have made several key observations that
shed light on the performance of S-estimators and their dependence on the choice of the
algorithm used to compute them.

Firstly, while the S-estimator possesses a high theoretical breakdown point, up to 50%
for the right choice of the constant c0 as in Equation (3.11), we found that it tends to break
earlier than expected in practice. This indicates that the robustness of the S estimator
may be more limited in real-world situations, highlighting the need for caution when re-
lying solely on its breakdown point as a measure of robustness. In particular, we have
seen that the S-estimator performs generally worse than the minimum covariance deter-
minant (MCD), which also has a maximum breakdown point equal to 50% (see Maronna
et al. (2006)).

Secondly, we observed that the behavior of the S-estimator is closely linked to the choice
of the algorithm employed. Our analysis revealed that S-estimators computed by different
algorithms exhibit varying degrees of robustness. This underscores the importance of care-
fully considering the algorithm selection when applying S-estimators in practice, as it can
significantly impact their performance and resilience to outliers. More specifically we have
seen that the subsampling algorithm corresponding to the sfast method, which happens to
be the default choice for S-estimators computation in the library rrcov, fails to deliver ac-
curate results from relatively low contamination levels already, as opposed to the iterative
algorithms, corresponding to the bisquare and rocke methods, with the latter being more
accurate in higher dimensions.

Surprisingly, we found that the M-estimator, another commonly used estimator, exhib-
ited higher resistance to breakdown than initially anticipated. By Maronna et al. (2006) its
breakdown point is given by 1/(p +1) which means that theoretically, it should break with
very low contamination levels by higher dimensions. Instead, throughout the simulation
study, it delivers good estimates of up to 30% contamination even in higher dimensions.
This unforeseen result could be explained by the specific kind of contamination used. It
might very well be that a different contamination would cause breakdown in lower con-
tamination levels.

Additionally, our simulation study led us to develop Conjecture 4.1 regarding the be-
havior of the subsampling algorithm sfast used to compute S-estimators. We observed that
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in situations where the collected estimated data are distributed asymmetrically around its
center, the optimal subsample returned by the algorithm picks roughly half of its points
from the contaminated data, and half from the non-contaminated one.

In summary, our study on the robustness of S-estimators highlighted the complexities
involved in assessing their performance in specific scenarios. The choice of the algorithm,
the behavior of the M-estimator, and the potential utility of conjecture 4.1 all emerged as
critical factors to consider. These findings contribute to the ongoing understanding of ro-
bust estimation techniques and provide valuable insights for practitioners in choosing ap-
propriate methods for robust data analysis.

Further research in this area is recommended to refine our understanding and explore
additional aspects of robustness in estimation methods.
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Appendix

6.1. R-code for estimators’ comparison
library(rrcov)
library(robustbase)
library(MASS)
library(dplyr)
library(stats4)
library(ggplot2)

sample_size = 100
nrep=500

contamination_size = c(0, 0.10, 0.20, 0.30, 0.40, 0.45)
dimension_size = c(2, 5, 10)
shift_vec = c(5,10,25)

dat=NULL

for (k in 1:3){
for (i in 1:6){

for (j in 1:3){
shift=shift_vec[k]
c_n=contamination_size[i]
eps=1-c_n
p=dimension_size[j]
n=sample_size

Sigma = diag(p)
Mu = rep(0, p)

#creating vectors to store estimated data
mu_vector_sample_mean = vector(’numeric’, nrep)

33
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mu_vector_s_est = vector(’numeric’, nrep)
mu_vector_m_est = vector(’numeric’, nrep)
mu_vector_MCD_est = vector(’numeric’, nrep)

largest_eig_vector_sample_var = vector(’numeric’, nrep)
largest_eig_vector_s_est = vector(’numeric’, nrep)
largest_eig_vector_m_est = vector(’numeric’, nrep)
largest_eig_vector_MCD_est = vector(’numeric’, nrep)

smallest_eig_vector_sample_var = vector(’numeric’, nrep)
smallest_eig_vector_s_est = vector(’numeric’, nrep)
smallest_eig_vector_m_est = vector(’numeric’, nrep)
smallest_eig_vector_MCD_est = vector(’numeric’, nrep)

for (m in 1:nrep){
#creating contaminated data at every iteration
# treat c_n=0 separately
if (eps==1){contamination = mvrnorm(n * eps, mu = Mu,

Sigma = Sigma)}
else{

#original data
sim_data_clean = mvrnorm(n * (eps), mu = Mu,

Sigma = Sigma)
#contaminated data
sim_data_cont = mvrnorm(n * c_n, mu = rep(shift, p),

Sigma = Sigma)
#dataset with conatmination
contamination = rbind(sim_data_clean, sim_data_cont)
} # END ifelse

#sample mean
mu_vector_sample_mean[m] = mean(CovClassic(contamination)$center)

#computing estimators for contaminated data
s_est = CovSest(contamination)
m_est = CovMest(contamination)
MCD_est = CovMcd(contamination)

#assign mean values of estimators to their vectors
mu_vector_s_est[m] = mean(s_est@center)
mu_vector_m_est[m] = mean(m_est@center)
mu_vector_MCD_est[m] = mean(MCD_est@center)

# getting largest and smallest eigenvalues
#of estimated covariance matrices:
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largest_eig_vector_sample_var[m] =
max(eigen(cov(contamination))$values)

largest_eig_vector_s_est[m] = max(eigen(s_est@cov)$values)
largest_eig_vector_m_est[m] = max(eigen(m_est@cov)$values)
largest_eig_vector_MCD_est[m] = max(eigen(MCD_est@cov)$values)

smallest_eig_vector_sample_var[m] =
min(eigen(cov(contamination))$values)

smallest_eig_vector_s_est[m] = min(eigen(s_est@cov)$values)
smallest_eig_vector_m_est[m] = min(eigen(m_est@cov)$values)
smallest_eig_vector_MCD_est[m] = min(eigen(MCD_est@cov)$values)

} # END iteration loop

# storing results
CL=cbind(rep(shift,times=nrep),

rep(c_n,times=nrep),
rep(p,times=nrep),
rep(1,times=nrep),
mu_vector_sample_mean,
smallest_eig_vector_sample_var,
largest_eig_vector_sample_var)

S=cbind(rep(shift,times=nrep),
rep(c_n,times=nrep),
rep(p,times=nrep),
rep(2,times=nrep),
mu_vector_s_est,
smallest_eig_vector_s_est,
largest_eig_vector_s_est)

M=cbind(rep(shift,times=nrep),
rep(c_n,times=nrep),
rep(p,times=nrep),
rep(3,times=nrep),
mu_vector_m_est,
smallest_eig_vector_m_est,
largest_eig_vector_m_est)

MCD=cbind(rep(shift,times=nrep),
rep(c_n,times=nrep),

rep(p,times=nrep),
rep(4,times=nrep),
mu_vector_MCD_est,
smallest_eig_vector_MCD_est,
largest_eig_vector_MCD_est)
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dat=rbind(dat,CL,S,M,MCD)
} # END j-loop

}# END i-loop
}# END k-loop

dat=data.frame(dat)
colnames(dat)=c("shift","Contamination level","dim","Estimator",

"Location indicator",
"Covariance indicator (smallest eigenvalue)",
"Covariance indicator (largest eigenvalue)")

View(dat)

#assigning factor class to factor columns
dat[,1]=factor(dat[,1],levels=shift_vec,labels=c("shift 5","shift 10",

"shift 25"))
dat[,2]=factor(dat[,2], levels = contamination_size,

labels = c("0%", "10%", "20%", "30%", "40%", "45%"))
dat[,3]=factor(dat[,3],levels=dimension_size,

labels=c("dimension 2","dimension 5","dimension 10"))
dat[,4]=factor(dat[,4],levels=1:4,labels = c("CL","S","M","MCD"))

#grouped ggplots
ggplot(dat[dat$shift == ’shift 25’, ],

aes(x=‘Contamination level‘, y=‘Location indicator‘,
fill=Estimator)) +

geom_boxplot()+
facet_wrap(~dim) +
theme(legend.position = "bottom")

ggplot(dat[dat$shift == ’shift 5’, ],
aes(x=‘Contamination level‘,

y=‘Covariance indicator (smallest eigenvalue)‘,
fill=Estimator)) +

geom_boxplot()+
facet_wrap(~dim, scales = ’free’) +
theme(legend.position = "bottom")

ggplot(dat[dat$shift == ’shift 5’, ],
aes(x=‘Contamination level‘,

y=‘Covariance indicator (largest eigenvalue)‘,
fill=Estimator)) +

geom_boxplot()+
facet_wrap(~dim, scales = ’free’) +
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theme(legend.position = "bottom")

6.2. R-code for algorithms’ comparison
library(rrcov)
library(robustbase)
library(MASS)
library(dplyr)
library(stats4)
library(ggplot2)

sample_size = 100
nrep=500

contamination_size = c(0, 0.10, 0.20, 0.30, 0.40)
dimension_size = c(2, 5, 10)
shift_vec = c(5,10,25)

dat_rocke=NULL

for (k in 1:3){
for (i in 1:5){

for (j in 1:3){
shift=shift_vec[k]
c_n=contamination_size[i]
eps=1-c_n
p=dimension_size[j]
n=sample_size

Sigma = diag(p)
Mu = rep(0, p)

mu_vector_s_est_sfast = vector(’numeric’, nrep)
mu_vector_s_est_bisquare = vector(’numeric’, nrep)
mu_vector_s_est_rocke = vector(’numeric’, nrep)

cov_s_est_sfast_smallest = vector(’numeric’, nrep)
cov_s_est_bisquare_smallest = vector(’numeric’, nrep)
cov_s_est_rocke_smallest = vector(’numeric’, nrep)

cov_s_est_sfast_largest = vector(’numeric’, nrep)
cov_s_est_bisquare_largest = vector(’numeric’, nrep)
cov_s_est_rocke_largest = vector(’numeric’, nrep)
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determinant_vector_sfast = vector(’numeric’, nrep)
determinant_vector_bisquare = vector(’numeric’, nrep)
determinant_vector_rocke = vector(’numeric’, nrep)

for (m in 1:nrep){
#creating contaminated data at every iteration
# treat c_n=0 separately
if (eps==1){contamination = mvrnorm(n * eps,

mu = Mu, Sigma = Sigma)}
else{

sim_data_clean = mvrnorm(n * (eps), mu = Mu, Sigma = Sigma)
sim_data_cont = mvrnorm(n * c_n,

mu = rep(shift, p), Sigma = Sigma)
contamination = rbind(sim_data_clean, sim_data_cont)

} # END ifelse

#computing estimators for contaminated data
s_est_sfast = CovSest(contamination)
s_est_bisquare = CovSest(contamination, method = ’bisquare’)
s_est_rocke = CovSest(contamination, method = ’rocke’)

#assign mean values of estimators to their vectors
mu_vector_s_est_sfast[m] = mean(s_est_sfast$center)
mu_vector_s_est_bisquare[m] = mean(s_est_bisquare$center)
mu_vector_s_est_rocke[m] = mean(s_est_rocke$center)

#assign to their vector:
cov_s_est_sfast_smallest[m] = min(eigen(s_est_sfast$cov)

$values)
cov_s_est_bisquare_smallest[m] = min(eigen(s_est_bisquare$cov)

$values)
cov_s_est_rocke_smallest[m] = min(eigen(s_est_rocke$cov)

$values)

cov_s_est_sfast_largest[m] = max(eigen(s_est_sfast$cov)
$values)

cov_s_est_bisquare_largest[m] = max(eigen(s_est_bisquare$cov)
$values)

cov_s_est_rocke_largest[m] = max(eigen(s_est_rocke$cov)
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$values)

#getting determinants of estimated covariance:
determinant_sfast = det(s_est_sfast$cov)
determinant_bisquare = det(s_est_bisquare$cov)
determinant_rocke = det(s_est_rocke$cov)
#assign to their vector:
determinant_vector_sfast[m] = determinant_sfast
determinant_vector_bisquare[m] = determinant_bisquare
determinant_vector_rocke[m] = determinant_rocke

} # END iteration loop

# storing results

S_sfast=cbind(rep(shift,times=nrep),
rep(c_n,times=nrep),
rep(p,times=nrep),
rep(1,times=nrep),
mu_vector_s_est_sfast,
cov_s_est_sfast_smallest,
cov_s_est_sfast_largest,
determinant_vector_sfast)

S_bisquare=cbind(rep(shift,times=nrep),
rep(c_n,times=nrep),
rep(p,times=nrep),
rep(2,times=nrep),
mu_vector_s_est_bisquare,
cov_s_est_bisquare_smallest,
cov_s_est_bisquare_largest,
determinant_vector_bisquare)

S_rocke=cbind(rep(shift,times=nrep),
rep(c_n,times=nrep),
rep(p,times=nrep),
rep(3,times=nrep),
mu_vector_s_est_bisquare,
cov_s_est_rocke_smallest,
cov_s_est_rocke_largest,
determinant_vector_rocke)

dat_rocke = rbind(dat_rocke, S_sfast, S_bisquare, S_rocke)
}



40 6. Appendix

}
}
dat_rocke = data.frame(dat_rocke)
colnames(dat_rocke)=c("shift","Contamination level","dim",

"Different Algorithms",
"Location indicator",
"Covariance indicator (smallest eigenvalue)",
"Covariance indicator(largest eigenvalue)" ,
"Covariance indicator (determinant)")

View(dat_rocke)

dat_rocke[,1]=factor(dat_rocke[,1],levels=shift_vec,
labels=c("shift 5","shift 10","shift 25"))

dat_rocke[,2]=factor(dat_rocke[,2],levels=contamination_size,
labels=c("No Contamination","10%","20%","30%","40%"))

dat_rocke[,3]=factor(dat_rocke[,3],levels=dimension_size,
labels=c("dim 2","dim 5","dim 10"))

dat_rocke[,4]=factor(dat_rocke[,4],levels=1:3,
labels = c("Sfast","Bisquare","Rocke"))

ggplot(dat_rocke, aes(x=dim,
y=‘Covariance indicator (smallest eigenvalue)‘,
fill=‘Different Algorithms‘)) +

geom_boxplot()+
facet_wrap(~‘Contamination level‘+shift,scale="free",

nrow = 5, ncol = 3) +
theme(legend.position = "bottom")

ggplot(dat_rocke, aes(x=dim,
y=‘Location indicator‘,
fill=‘Different Algorithms‘)) +

geom_boxplot()+
facet_wrap(~‘Contamination level‘+shift,scale="free",

nrow = 5, ncol = 3) +
theme(legend.position = "bottom")

ggplot(dat_rocke, aes(x=dim,
y=‘Covariance indicator(largest eigenvalue)‘,
fill=‘Different Algorithms‘)) +

geom_boxplot()+
facet_wrap(~‘Contamination level‘+shift,scale="free",

nrow = 5, ncol = 3) +
theme(legend.position = "bottom")
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ggplot(dat_rocke, aes(x=dim, y=‘Covariance indicator (determinant)‘,
fill=‘Different Algorithms‘)) +

geom_boxplot()+
facet_wrap(~‘Contamination level‘+shift,scale="free",

nrow = 5, ncol = 3) +
theme(legend.position = "bottom")

6.3. R-code for Figure 4.3.1
library(rrcov)
library(robustbase)
library(MASS)
library(dplyr)
library(stats4)

n = 100
p = 10
c_n_30 = 0.30
eps_30 = 1 - c_n_30
Sigma = diag(p)
Mu = rep(0, p)

#creating 500x10 matrix to contain mu estimate in each row with contamination 30%
mu_sm_30 = matrix(0,ncol=p,nrow=500) #for sample mean
mu_s_30 = matrix(0,ncol=p,nrow=500) # for S-estimator
mu_MCD_30 = matrix(0,ncol=p,nrow=500) # for MCD estimator
mu_m_30 = matrix(0,ncol=p,nrow=500) #for M-estimator

#simulating 500 times 30% contamination with mu shift
#from 0 to 25 in every coordinate
for (i in 1:500){

#creating contaminated data at every iteration
sim_data_clean_30 = mvrnorm(n * (eps_30),

mu = Mu, Sigma = Sigma)
sim_data_cont_30 = mvrnorm(n * c_n_30,

mu = rep(shift, p), Sigma = Sigma)
contamination_30 = rbind(sim_data_clean_30, sim_data_cont_30)
#generating estimates
s_est_30 = CovSest(contamination_30)
MCD_est_30 = CovMcd(contamination_30)
m_est_30 = CovMest(contamination_30)
#assigning 500 values with coordinate wise
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#average of the mu estimation
mu_sm_30[i,] = colMeans(contamination_30)
mu_s_30[i,] = s_est_30@center
mu_MCD_30[i,] = MCD_est_30@center
mu_m_30[i,] = m_est_30@center

}

plot(rowMeans(mu_s_30),
main = ’Location indicator by iteration number

\nby meanshift of 25, dimension 10 and 30% contamination’,
xlab = ’Iteration number’, ylab = ’Location indicator’)

6.4. R-code for Figure 4.3.2
library(rrcov)
library(robustbase)
library(MASS)
library(dplyr)
library(stats4)

n = 100
p = 10
c_n_30 = 0.30
eps_30 = 1 - c_n_30
Sigma = diag(p)
Mu = rep(0, p)

#creating 500x10 matrix to contain mu estimate in each row with contamination 30%
mu_sm_30 = matrix(0,ncol=p,nrow=500) #for sample mean
mu_s_30 = matrix(0,ncol=p,nrow=500) # for S-estimator
mu_MCD_30 = matrix(0,ncol=p,nrow=500) # for MCD estimator
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mu_m_30 = matrix(0,ncol=p,nrow=500) #for M-estimator

#simulating 500 times 30% contamination with mu shift
#from 0 to 25 in every coordinate
for (i in 1:500){

#creating contaminated data at every iteration
sim_data_clean_30 = mvrnorm(n * (eps_30),

mu = Mu, Sigma = Sigma)
sim_data_cont_30 = mvrnorm(n * c_n_30,

mu = rep(shift, p), Sigma = Sigma)
contamination_30 = rbind(sim_data_clean_30, sim_data_cont_30)
#generating estimates
s_est_30 = CovSest(contamination_30)
MCD_est_30 = CovMcd(contamination_30)
m_est_30 = CovMest(contamination_30)
#assigning 500 values with coordinate wise
#average of the mu estimation
mu_sm_30[i,] = colMeans(contamination_30)
mu_s_30[i,] = s_est_30@center
mu_MCD_30[i,] = MCD_est_30@center
mu_m_30[i,] = m_est_30@center

}

plot(rowMeans(mu_s_30),
main = ’Location indicator by iteration number

\nby meanshift of 25, dimension 10 and 30% contamination’,
xlab = ’Iteration number’, ylab = ’Location indicator’)
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