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Abstract

Susceptible-Infected-Susceptible (SIS) model is commonly used to describe the spreading
of virus on networks. However, a real-life epidemic process is not necessarily Markovian.
The spreading of diseases, behaviours and information in real systems are sometimes
dependent on the characteristics and current status of individuals. Thus it is far from
enough to just consider Markovian processes. We need to consider a more general model
with non-Markovian processes. Although some recent works focus on the SIS model with
a non-Markovian infection process, systematic research on the non-Markovian curing
process is still lacking. Therefore, this thesis project is to study the influence of the
non-Markovian curing process on the performance of SIS viral spreading on networks.

Through continuous-time SIS epidemics simulator, we find some dramatic effects of
a non-exponential curing time (while still assuming an exponential infection time) on
the prevalence and critical point of effective infection rate by considering Weibullean
curing times with same mean, but different shape parameter α. For α ∈ [0.2, 10], the
epidemic threshold satisfies τc = 1

λ1
, which is the same as the NIMFA conclusions of

Markovian SIS process. Relatively, when α is too small, a large number of curing events
synchronously happened at the beginning of the simulation, which will lead to collective
deaths on finite network. The effect on initial condition of nodes further cause a decline
on prevalence and an slow phase transition between healthy state and the metastable
state. Furthermore, the heavy-tailed distribution of curing time leads to a small percent
of nodes still surviving at the metastable state, even under a very low effective infection
rate. The heavy-tailed distribution gives some nodes an extreme long curing time and
thus can infect other nodes with a pretty small probability, thereby maintaining the
virus’ long-term spread in a small group of nodes. This spreading mode seems can
explain some virus spreading phenomenon, like the spreading mode of hepatitis B virus
(HBV). Additionally, when the shape parameter α of Weibull distribution is pretty large,
the distribution of curing time is like a pulse or a Dirac delta function (δ function), thus
a huge amount of nodes can get synchronously recovered. We find when we control the
successful curing probability p = 1− 1/e ≈ 0.632, the prevalence of pulse curing at the
metastable state is equivalent to a Poisson curing process. Therefore, the pulse curing
strategy can suppress the spreading of viruses and further save medical resources.
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1
Introduction

1.1. Background

The propagation of diseases and information are rarely independent of each other in
real-world networks [1]. In order to effectively explain the process of disease spreading,
mathematical epidemic models have been widely investigated for a long period [2, 3]. The
classical SIR epidemic model was proposed in 1927 [4]. And after that, there developed a
huge number of publications on different epidemic dynamics. The Susceptible-Infected-
Susceptible (SIS) model is one of the basis models in epidemiology [5], which is a first-
order description of the spread of real epidemics. The range of applications is broad,
including biological virus spread [6, 7], malware spread [8, 9], financial network contagion
[10] and so on.

In general viral spreading epidemic models, various people are assumed to be homoge-
neously mixed, which means that susceptible people are infected with the same rate [11].
The Markovian SIS model is described using exponential waiting times for both infection
and curing events [12]. However, a real-life epidemic process is not necessarily Marko-
vian. Especially the current state of individuals can be affected by its characteristics
and past experience. For instance, when a disease spreads among the people, recovered
people often have strong resistance to the disease, so they are not easy to get re-infection
or have the ability to get recovery more faster than others after re-infection. Moreover,
different physical conditions of each individual also make differences in recovery. Thus
it is far from enough to just consider Markovian processes. In order to model general
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2 1. Introduction

non-Markovian epidemic process, we consider the curing process as a renewal process
and the waiting time interval following a more general distribution.

1.2. Motivation

Although some recent works focus on the SIS model with a non-Markovian infection pro-
cess, systematic research on the non-Markovian curing process is still lacking. Therefore,
this thesis project is to study the influence of the non-Markovian curing process on the
performance of SIS viral spreading on networks. Generally, this project is to theoretically
and numerically study the SIS epidemics with non-Markovian curing process. The moti-
vation is to observe the influence of non-Markovian curing process on the performance of
SIS epidemics on networks. The study focuses on the dependence of the epidemic thresh-
old on the distribution of curing time and the applicability of N-Intertwined Mean-Field
Approximation (NIMFA) results on various networks.

1.3. Contribution

In this project, we first simulate the SIS epidemics with the non-Markovian curing
process on various networks. We assume curing time following a Weibull distribution or
gamma distribution. Comparing the performance with previous theoretical conclusion,
we find dramatic discrepancies between simulation results and theoretical conclusion.

Specifically, we first find that when the shape parameter of Weibull distribution is close to
zero or larger than 10, the curing time have synchronicity, which means a high percentage
of curing event trends to happen within a very short time. Especially when shape
parameter is pretty large, the curing time follows a pulse-like distribution. That will
cause a huge percentage of collective death and further affect the initial state of entire
processes. Thus the discrepancies of prevalence are resulting from that reason. Inspired
by the influence of pulse-like distribution of curing time, a kind of pulse curing strategy
can be applied to suppress the spreading on networks to save cure resources in some
extents. Furthermore, we can make use of the theoretical results of the effect of pulse
strategy on the epidemic threshold to find the optimal curing plan for some existing
viral spreading situations.

In addition to that, when shape parameter α is pretty small, the heavy-tailed distri-
bution of curing time can causes a small percentage of infected nodes survive at the
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metastable state even with a low effective infection rate. This special case describes the
process in which some individuals obtained a long curing time and keep trying to infect
neighbors within the infected period, resulting in the disease slowly and continuously
spread between small group of nodes at the metastable state. The propagation pattern
of hepatitis B virus (HBV) [13] is similar to this case.

1.4. Thesis Outlines

The Thesis will be described by 5 chapters and the remaining chapters of the thesis
contain the following:

• Chapter 2 first provides the introduction to complex networks and SIS viral spread-
ing model. This chapter next covers literature review on previous research of SIS
epidemics both with Markovian process and further non-Markovian spreading pro-
cess.

• Chapter 3 first gives an short introduction of the continuous-time SIS epidemics
simulator and further describes the simulation procedures we designed to analyze
the effects of non-Markovian curing processes on the prevalence and the criti-
cal point of phase transition. Eventually, we find some dramatic effects of non-
Markovian processes when the distributions of curing time R are different. We
present the influence of pulse-like distribution of curing time on the initial condi-
tion leading to some extents of collective deaths on finite network. That condition
will finally affect the prevalence at the metastable state. In addition to that, we
further discuss the effects of heavy-tailed distribution of curing time R and find a
special spreading phase caused by this reason.

• Chapter 4 investigates the pulse curing strategy. The theoretical analysis of pulse
curing effects are given through the theoretical deviation process. The impacts of
pulse curing strategy are demonstrated through simulations. Besides, the sugges-
tions of using pulse strategy will be shown at last.

• Chapter 5 gives a conclusion of the whole thesis project and some prospects for
future research on non-Markovian SIS epidemics on networks.





2
The SIS Epidemic Spreading Model on

Networks

In epidemiology, the Susceptible-Infected-Susceptible (SIS) is a typical model, which
starts with infected items infecting their healthy neighbors. Compared with the discrete-
time SIS model, the SIS model in continuous-time can describes the realistic epidemics
process better [14], e.g. the flu spreading among people [15] and malware spreading
process in computer networks [16]. One simple but practically meaningful method to
study the effect of the network topology on the process that runs over the topology is
applying the continuous-time SIS model epidemic process on graphs. Therefore, this
chapter will first introduce two kinds of complex graphs based on their characteristic
topology and a matrix that facilitates embodying topological properties. Furthermore,
this chapter mainly focuses on the epidemic spreading process of continuous-time SIS
process and the N-Intertwined Mean-Field Approximation (NIMFA), which is proposed
by P. Van Mieghem [17]. However, the classical continuous-time SIS Markov model is a
special case where both infection and cure process are exponentially distributed, which
cannot describe real-life epidemics well. The second part of this chapter will concentrate
on previous results on non-Markovian SIS process and point out the main objective of
this thesis.

5



6 2. The SIS Epidemic Spreading Model on Networks

2.1. Complex Networks

Network science studies networks among different fields with various complexities and
characteristics, such as telecommunication networks [18, 19], computer networks [20],
social networks [21], biological networks [22] and so on. Graph can model pairwise
relations between objects. In order to simulate the process of information spreading
on networks and observe the performance of simulation. In this thesis, we consider
information spread in an undirected graph G(N , L), where N is the set with N nodes
and L the set with L links. There is no limit to the direction of information spreading
between random pair of nodes, but only one direction can be transmitted at a time. The
topological characteristics of the graph G can be described by the adjacency matrix A.

2.1.1. Adjacency Matrix A

The adjacency matrix [23], which is a N × N matrix, describes adjacency between
various nodes and contains the basic topological properties of the underlying network
G. If there is a link between node i and node j, then the adjacency parameter aij=
aji= 1. Conversely, there is no link between node i and node j, then the adjacency
parameter aij= aji= 0. Therefore, adjacency matrix is a symmetric matrix AT = A. It
is assumed further in this paper that the graph G does not contain self-loops (aii = 0)
nor multiple links between two nodes. The adjacency matrix A has N eigenvalues with
λ1 ≥ λ2 ≥ λ3 ≥ ... ≥ λN , and according to the Gerschgorin’s theorem: 0 ≤ λ1 ≤ dmax.
As another important graph metric, the degree di is the number of neighbors of node i,
which is di=

∑N
j=1 aij.

2.1.2. Graph Models

Networks are mathematically described as graphs. According to the different character-
istics of the network topology, the simple graphs can be divided into different classes.
The following five kinds of network models are mainly involved in this thesis.

1. Deterministic Graph Models

Complete Graph: The complete graph KN is the mother of all kinds of graphs with same
number of nodes [24]. In the complete graph, each node is connected to all other nodes
and the number of links L = N(N − 1)/2.
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Regular Graph: Each node in regular graph has the same degree di = d = k for
i=1,2,...,N. The complete graph is a special case of regular graph.

Star Graph: A star graph Sk has N = k + 1 nodes and the number of links L = k. It
has a center node connected with all the other nodes and degree is k. And other nodes
only connect with the center node with one link for each.

2. Complex Graph Models

Erdős-Rényi Random Graph (ER): Random graphs are introduced by Erdős and Rényi
[25] and they showed many monotone-increasing properties of random graphs. The
Erdős-Rényi (ER) random graph Gp(N) has N nodes in total and each node pair is
connected independently with probability p. And any so generated graphs (i.e. any
realizations) belongs to the class of ER random graph Gp(N) with same N and p. Thus,
aij is a Bernoulli random variable with mean p, with the probability of aij = 1 is p and
the probability of aij = 0 is 1 − p. The degree distribution of graph G is following the
binomial distribution and the average number of links is L = N(N−1)

2
p. The eigenvalues

is determined by N and p. And If p = 1, then G1(N) is the complete graph KN .

Scale-Free Graph of Barabási-Albert (BA) [26] : The scale-free network model is a net-
work whose degree distribution follows a power law, at least asymptotically. It has a
typical characteristics that most nodes in the network are connected to a few hubs, and
those hubs are connected to a large number of nodes. Many realistic network have such
scale-free features, such as the Internet, financial system networks, social networks, and
so on [27].

2.2. The SIS Epidemic Model

In SIS (Susceptible-Infected-Susceptible) model, each node in this dynamical model can
be in two states, infected and healthy. There are two state transition processes existing
in this model: the infection process and the curing process. In classical continuous-time
SIS Model, we assume the infection process per link is a Poisson process with infection
rate β and the curing process per node i is a Poisson process with cure rate δ. The
effective infection rate is τ = β

δ
. Only when a node is infected, can it infects its direct

healthy neighbors and recovered nodes can be infected again. For example, diseases
such as gonorrhea or chlamydia fall into this group. All curing and infection Poisson
processes are independent. Figure 2.1 shows that how individuals move through each
state with SIS epidemic model in the reaction-diffusion process.
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Figure 2.1: Diagrammatic representation of SIS model in terms of reaction-diffusion processes

2.2.1. The Continuous-time SIS Markov Process

We consider the virus spreading in a fixed graph G(N , L), which does not change over
time. The viral state of a node i at time t is specified by a Bernoulli random variable
Xi(t) ∈ 0, 1: Xi(t) = 0 for a healthy but susceptible node and Xi(t) = 1 for an infected
node. A node i at time t can be in one of two possible states: infected state with the
probability wi(t) = Pr[Xi(t) = 1], and health state with probability 1−wi(t). Assuming
the infection and cure process are Poisson process, as it satisfies that (1) X(0) = 0; (2)
for all t0 = 0 < t1 < · · · < tn, the increments X(t1)−X(t0), X(t2)−X(t1), . . . , X(tn)−
X(tn−1) are independent random variables; (3) for the length of interval t > 0, time
τ ≥ 0 and non-negative integers k, the increments have the Poisson distribution

P [(X(t+ τ)−X(τ)) = k] =
(λt)ke−λt

k!
k = 0, 1, . . . (2.1)

Thus the increments only depend on the length of interval t and not on the time τ . To
conclude, the increments are stationary because X(t + τ) − X(τ) possesses the same
distribution for any time τ . And according to the properties of the Poisson distribution,
the mean E[X(t+ τ)−X(τ)] = λt. Especially with τ = 0 and X(0) = 0, the expected
number of events in a interval with length t is

E[X(t)] = λt, (2.2)

which means that λ is the rate of the Poisson process. Furthermore, events occur one
after another in the Poisson process and never happen at the same time. Therefore, the
Poisson process describes the number of events occurred until time t when the interval
from one event to the next is exponential and independent of all other intervals.

A stochastic process {X(t), t ∈ T} is a Markov process if the future state of the Markov
process only depends on the current state of the process and not on its past history.
And formally, a stochastic process {X(t), t ∈ T} is a continuous-time Markov process if
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, for all t1 < t2 < t3 < ... < tn+1 of the index set T and for any set x0, x1, ..., xn + 1 of
the state space, it holds that, for the continuous-time Markov chain {X(t), t ≥ 0} with
N states, the Markov property can be described as

Pr[X(t+ τ) = j | X(τ) = i,X(u) = x(u), 0 ≤ u < τ ]

= Pr[X(t+ τ) = j | X(τ) = i],
(2.3)

which reflects the fact that the future state at time t+τ only depends on the current state
at time τ . Therefore, the Poisson process is a continuous time Markov process on the
non-negative integers k where all transitions are a plus-one jump and the times between
jumps are independent exponential random variables with the same rate parameter λ.
This feature can be used to simplify the predictions about the future state of a node.
And according to our assumption, the infection and curing processes are following the
Poisson distribution with rate β and δ respectively.

2.2.2. The Governing Equations

The governing SIS equations is an intuitive approach that provides more insights into
the spreading phenomena of the SIS model. Since E[Xi]=Pr[Xi = 1], the exact SIS
governing equation for node i equals

dE [Xi(t)]

dt
= E

[
−δXi(t) + (1−Xi(t)) β

N∑
k=1

akiXk(t)

]
. (2.4)

The SIS governing equation shows that the change over time of the probability of infec-
tion E[Xi]=Pr[Xi = 1] of node i equals the average of two competing variables: (1) if
node i is infected, then dE[Xi]

dt
decreases with rate equal to the curing rate δ and (2) if

node i is healthy (1 − Xi), it can be infected with infection rate β from each infected
neighbor (its own self-infection is ignored). Since the network G does not change over
time, the (2.4) can be simplified to

dE [Xi(t)]

dt
= −δE [Xi(t)] + β

N∑
k=1

akiE [Xk(t)]− β
N∑
k=1

akiE [Xi(t)Xk(t)] , (2.5)

where the joint probabilities E[XiXj] = Pr[Xi = 1, Xj = 1]. When i = j, the governing
equations are the (2.5) above. BecausedE[XiXj ]

dt
= E

[
Xj

dXi
dt

+Xi
dXj
dt

]
, the

(
N
2

)
governing

equations for dE[XiXj ]

dt
can be derived for i 6= j as follows (omitting the time-dependence
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for brevity):

dE [XiXj]

dt
=E

[
Xj

(
β (1−Xi)

N∑
k=1

aikXk − δXi

)
+Xi

(
β (1−Xj)

N∑
k=1

ajkXk − δXj

)]

=− 2δE [XiXj] + β

N∑
k=1

aikE [XjXk] + β
N∑
k=1

ajkE [XiXk]

− β
N∑
k=1

(aik + ajk)E [XiXjXk]

.

(2.6)
Since the equation (2.6) includes E [XiXjXk], which needs to be further determined. As
mentioned above, by translating the SIS epidemic process directly in differential equa-
tions, we find that N equations for E[Xi(t)] require the knowledge of the joint expec-
tations E [XiXj], whose

(
N
2

)
differential equations require the knowledge of E [XiXjXk]

and its
(
N
3

)
differential equations require the joint fourth expectations and so on. There-

fore, there are
∑N

k=1

(
N
k

)
= 2N−1 equations and the conservation of probability equation

Pr[Xi = 1] + Pr[Xi = 0] = 1 are required in total. In conclusion, the defined infec-
tion process is a continuous-time Markov chain with 2N states. Therefore, the exact
SIS Markov process requires 2N linear equations to solve, which is infeasible for large
real-world networks. And then, finding a good approximate solution will be of vital
importance for the further research.

2.2.3. The Steady State and Phase Transition

The SIS model assumes nodes can be infected over and over again, in a cycle S → I → S,
thus the disease can be sustained forever under some conditions. In this case, the SIS
spreading process has a steady state with the number of infections equal to the number
of cure events.

We define the steady-state random variable as

Xi = lim
t→∞

Xi(t), (2.7)

which obeys limt→∞
dE[Xi(t)]

dt
= 0. Thus the average fraction of infected nodes in the

steady-state, also known as the prevalence, is represented by

y∞(τ) = E[S∞] =
1

N

N∑
i=1

Xi, (2.8)
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where τ is the effective infection rate. And in the steady-state, the equation (2.5) can
be simplified as

δE [Xi] = β
N∑
k=1

akiE [Xk]− β
N∑
k=1

akiE [XiXk] , (2.9)

which also presents that the number of infections equal to the number of cure events
in the steady state. The relationship between y∞(τ) and the effective infection rate τ
depicts the physical aspects of the steady state, where the critical point is the epidemic
threshold. The epidemic threshold τc is defined as the border between exponential die-
out and a non-zero fraction of infected nodes in the metastable state. The epidemic
threshold is analogous to the concept of phase transition in non-equilibrium systems
[28]. The phase transition is defined as an abrupt change in the state of a system.
Therefore, the determination of the critical point is significant in numerical simulations.
To conclude, in any finite given sized network, the exact SIS epidemic threshold holds
that

τc ≥ τ (1)
c =

1

λ1

, (2.10)

where λ1 is the spectral radius of the adjacency matrix A. This theorem can be of great
practical use: if the effective infection rate τ can be controlled such that τ ≤ τ

(1)
c , then the

network can be safeguarded from long-term and massive infection. While τ ≥ τ
(1)
c , the

spreading will enter the steady state. However, the steady-state of the exact SIS model
is always reach the absorbing state after unrealistically long time, and the absorbing
state is all-healthy state.

2.3. The Mean Field Analysis

In order to simplify the calculation progress and apply the SIS model to solve prob-
lems on real-world network with network size N is pretty large, we approximate the SIS
epidemics by subsequent order expansions. The N-Intertwined Mean-Field Approxima-
tion (NIMFA) proposed by P. Van Mieghem [17], which apply the first-order mean-field
expansion to approximates E[Xi], can be applied to solve only with N linear equations.

The number of infected neighbors of node i,
∑N

j=1 aijXj(t), couples or intertwines’ each
of the N nodal infection states in the network and causes higher-order joint probabilities.
In mean-field analysis, by assuming Xk be a sequence of independent random variables,
where E[Xi(t)Xj(t)] = E[Xi(t)]E[Xj(t)]. Thus, equations for higher-order joint proba-
bilities are not required. We denote vi(t) = Pr[Xi(t) = 1] under assumption. Thus, the
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governing equation for a node i in NIMFA is

dvi(t)

dt
= −δvi(t) + (1− vi(t)) β

N∑
j=1

aijvj(t). (2.11)

By comparing the exact equation and NIMFA equation, it shows that the random vari-
able Xk is replaced by its mean vk = E[Xk], irrespective of any correlation introduced
by terms as E[XiXj]. Also, ignoring correlations leads to a replacement of the actual
number of infected neighbors

∑N
j=1 aijXj by its mean

∑N
j=1 aijvj. The mean

∑N
j=1 aijvj

is an increasingly accurate estimator of the random variable
∑N

j=1 aijXj with N in-
creasing.(p120)According to the Central limit Theorem, for each node i, NIMFA upper
bounds dE[Xi(t)]

dt
≤ dvi(t)

dt
and E[Xi] = wi∞ ≤ vi∞. Thus, each node in the graph G obeys

a differential equation as follows:

dv1(t)
dt

= β
∑N

j=1 a1jvj(t)− v1(t)
(
β
∑N

j=1 a1jvj(t) + δ
)

dv2(t)
dt

= β
∑N

j=1 a2jvj(t)− v2(t)
(
β
∑N

j=1 a2jvj(t) + δ
)

...
dvN (t)
dt

= β
∑N

j=1 aNjvj(t)− vN(t)
(
β
∑N

j=1 aNjvj(t) + δ
) , (2.12)

with V (t) =
[
v1(t) v2(t) · · · vN(t)

]T
, and the matrix evolution equation of NIMFA

is
dV (t)

dt
= βAV (t)− diag (vi(t)) (βAV (t) + δu), (2.13)

where u is the all-one vector and diag(vi(t)) is the diagonal matrix with elements
v1(t),v2(t),. . . ,vN(t). Therefore, only N non-linear equations are required to solve in
NIMFA at the expense of exactness. Besides, the NIMFA epidemic threshold is precisely
τ

(1)
c = 1

λ1(A)
< τc. With this threshold, there is a phase transition to the metastable state.

To conclude, The NIMFA make the spreading process of SIS model analytically tractable
even with pretty large number of nodes N in any graph and it provides a lower bound
to the epidemic threshold.

Most studies on SIS epidemics in networks implicitly assume Markovian behaviour: the
infection time T and the cure time R are exponentially distributed because the infection
rate β and cure rate δ are following the Poisson distribution. And many efforts have
been made to characterize the epidemic threshold on various networks. However, these
exponential distributions in general do not describe real-life epidemics well [PR2013].
The classical continuous-time SIS Markov epidemic model is extended to incorporate
infection and curing times characterized by a general distribution, which is called as the
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generalized SIS (GSIS) model. The general distribution can be a gamma, Weibull and
other lognormal distributions. And this extension is believed to be more applicable for
the real-world epidemics.

With GSIS model, we assume all infection and cure processes are independent. If a node
i gets infected at time t, we draw independently of everything else a recovery time Ri(t).
Given Ri(t), we then draw independently, for each neighbor j of i, a random number
Mij(t) of infecting times T 1

ij(t) ≤ · · · ≤ T
Mij(t)
ij (t) ≤ Ri(t), nodes i tries to infect node

j at ties t + T 1
ij(k) with 1 ≤ k ≤ Mij(t). If node j is already infected at such a time,

then nothing happens. Finally, node i recovers at time t + Ri(t) and becomes healthy,
but again susceptible to infection. Similarly, an exact analysis of the GSIS model on
any network is very likely intractable, so that only an approximate a treatment seems
possible.

2.3.1. Weibull Distribution and Gamma Distribution

To study the non-Markovian curing process, we consider gamma distribution andWeibull
distribution as a more general distribution instead of the Poisson distribution in this
project. And the description of gamma distribution and Weibull distribution are in the
following:

1. Gamma Distribution
The gamma distribution [29] is as following,

fTGamma (x; ξ) =

1
bΓ

(
x
bΓ

)ξ−1

Γ(ξ)
e
− x
bΓ . (2.14)

With mean E[TGamma] = bΓξ and variance V ar[TGamma] = ξb2
Γ and the corresponding

pgf (probability-generating function):

ϕTGamma (z; ξ) = (1 + bΓz)−ξ . (2.15)

For ξ=1, the gamma distribution reduces to an exponential distribution. The key param-
eter for the gamma distribution is the shape parameter ξ, and bΓ is the scale parameter.
If ξ = k ≥ 1 is an integer, then the gamma random variable equals the sum of k
independent and identically distributed exponential random variables [30, p.45-46].

2. Weibull Distribution
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The Weibull distribution [31] is as following:

fT (x) =
α

b

(x
b

)α−1

e−(x/b)α , (2.16)

for x ≥ 0, with the expectation E[T ] = bΓ
(
1 + 1

α

)
, where α is a shape parameter. Γ(x)

is the gamma function. And b =
[
λΓ
(
1 + 1

α

)]−1 because, in order to compare Weibull
distribution with the exponential distribution, the average curing time E[T ] is fixed to
the inverse of the rate 1/λ. Besides, the distribution function is

FT (x) = Pr[T 6 x] = 1− e−(x/b)α . (2.17)

The Weibull distribution is heavy-tailed when α < 1, the tail decreases slower, but the
probability of small intervals increases as a power law, proportional to xα−1 [32]. The
Weibull distribution reduces to the exponential distribution when α = 1 and Gaussian-
like when α > 1.

Figure 2.2: The Weibull distribution with various α

2.3.2. The Mean-field Approximation in GSIS

Assuming that a metastable state exists, thus the average recovery time E[Ri] and the
average number E[Mij] of infection event of node i are finite. Denoting vi is the prob-
ability of node i getting infected in the metastable state. Besides, when we determine
the effect of the neighbors on node i, we ignore the affects of node i to its neighbors.

Under these assumptions, we consider node j as a neighbor of node i. According to the
elementary renewal theorem [30, p.165], the length of an infected period equals E[R]

and the number of node j got infected is asymptotically linear within a large time S.
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Therefore, the number of infected periods is vjS/E[R]. The average number of times
that node j tries to infect node i is equal to E[M ]. So that the total number number of
node j attempting to infect node i is asymptotically equal to vjSE[M ]/E[R]. According
to the mean-field approximation, the fraction of successful infections from node j to
node i is equal to 1− vi. Thus, the total number of successful infections that node i will
receive in the time interval [0, S] is asymptotically equal to

S
∑
j∈Ui

E[M ]

E[R]
vj (1− vi) , (2.18)

where we denote Ui as the index set of neighbors of node i and Ui = {j | aij = 1}.
Therefore, in the metastable state, we have

S
N∑
j=1

aij
E[M ]

E[R]
vj (1− vi) = vi

S

E[R]
. (2.19)

The right-side of (2.19) is the number of infected periods of node i in interval [0, S].
And to simplify (2.19), we get

E[M ] (1− vi)
N∑
j=1

aijvj = vi. (2.20)

Besides, we consider the curing time R and infection time T are following the renewal
processes, respectively. The renewal process is a counting process for which the inter-
arrival times τn are i.i.d. random variables with distribution Fτ (t). Thus, through
derivation, we finally arrive at the general expression of E[M ] is

E[M ] =
1

2πi

∫ c+i∞

c−i∞

ϕT (z)ϕR(−z)

1− ϕT (z)

dz

z
, (2.21)

where c > 0 and ϕR(z) =
∫∞

0
e−zufR(u)du is the probability generating function (PGF)

of the curing time R.

P. Van Mieghem [33] shows that if the infection process follows the Poisson distribution
with rate β, the infection time T is exponentially distributed with mean 1/β. And
we only consider the curing time follows a general distribution with mean 1/δ, that
E[R] = 1/δ. Then the PGF is ϕT (z) = β

z+β
, the (2.21) can be simplified to

E[M ] =
β

2πi

∫ c+i∞

c−i∞

ϕR(−z)

z2
dz (c > 0). (2.22)
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Thus when we close the contour over the negative Re(z) plane, in which ϕR(−z) is
analytic and |ϕR(−z)| 6 1. Thereby, by the Cauchy’s integral theorem, we can get

E[M ] = β
dϕR(−z)

dz

∣∣∣∣
z=0

= βE[R] = τ (2.23)

Then we can know if the infection time T is exponentially distributed, then for any
general distribution of the curing time R, NIMFA results are suitable to be applied.

2.4. Non-Markovian Infection Spread Epidemics

P. Van Mieghem [34] investigated the dramatic effect of a non-exponential infection
time on the epidemic threshold by considering Weibullean infection times with the same
mean, but different shape parameters α of Weibull distribution, on three basic classes
of graphs. The average steady-state fraction of infected nodes is simulated from which
the epidemic threshold is deduced. And the epidemic threshold increases with the shape
parameters α. It mentioned that if the real epidemics are not infecting direct neighbors
in an exponential time, a more deep-in research covers more types of graphs and other
heavy-tailed distribution for both infection and curing is required.

Q. Liu [35] studied the Weibullean SIS process with the shape parameter α in two
kinds of extreme situations with α → 0 and α → ∞. When α → 0, the Weibullean
SIS epidemic threshold is zero, and for an arbitrary small α the mean-field epidemic
threshold tends to zero. When α→∞, the prevalence of the Weibullean SIS process in
the long run, together with the NIMFA and the Markovian prevalence, the accuracy of
the mean-field approximation is worst in the rectangular grid network with a minimum
largest eigenvalue, and best in the scale-free network with a largest eigenvalue.

Even some recent works focus on the SIS model with a non-Markovian infection process,
the systematic research on the SIS epidemics with non-Markovian curing process is still
lacking. This thesis project extends curing process to a renewal process with inter-arrival
intervals following a more general distribution, like Weibull distribution and gamma
distribution. Combining the theoretical results from P. Van Mieghem [33] in 2013, this
work demonstrated that if the infection time T is exponentially distributed with the mean
1/β, then for any distribution of the recovery process, the NIMFA conclusion applies.
Therefore, it holds that the non-Markovian SIS spreading process have the epidemic
threshold that τc = 1

λ1
under the NIMFA assumption. Therefore, this project will

first examine that conclusion with simulations on exact networks. Through comparing
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the discrepancies between simulation results and theoretical conclusions, we have a deep
understanding of SIS epidemics with non-Markovian curing process on networks. A series
of systematic simulations and results analysis will be presented in the next chapter.





3
Non-Markovian SIS Curing Epidemics

In previous research, the non-Markovian Susceptible-Infected-Susceptible (SIS) process
with infection time interval following a more general distribution has been studied. How-
ever, systematic research on the non-Markovian curing process is still lacking. In order
to explore the exact spreading process and the performance of non-Markovian curing
process, various simulations on SIS epidemics with non-Markovian curing process will
be implemented in this chapter.

3.1. Continuous-time SIS Epidemics Simulator

The simulator we used in this project is designed by Ruud van de Bovenkamp [36]. It
is designed to model the graph dynamics on exact networks. The simulator provides
a publicly available toolkit to extract graphs from data-sets or data streams and to
analyse their properties. Everything that can be represented as a collection of entities
that have a relation can be modeled as a network. And simulator provides various
kinds of underlying networks, including Erdős-Rényi random graph, BA scale-free graph
and so on. The simulator can simulate the SIS viral spreading process based on these
networks.

The simulator allows to start simulation with different percentage of nodes in infected
states. In this project, all nodes are infected in the initial state. The distribution of
infection time T and cure time R can be designed by choosing different shape parameter

19
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α and mean (infection rate and cure rate). During the simulation, the simulator records
the number of infected nodes in each step. After 50 time units, the simulator can show
us the prevalence of exact spreading process in meta-stable state.

During the simulation, the infected nodes will cure with curing rate δ irrespective of the
state of the rest of the network. While the node is healthy and susceptible to disease,
its infected neighbors will spread the infection with a combination rate. Therefore, the
total infection rate that a healthy node i experiences is not constant over the healthy
period of the node as infected neighbours can cure. Comparing with the assumptions
of the the N-Intertwined Mean-Field Approximation (NIMFA) [17], the viral state of
the nodes are not independent since clearly the rate of change from the healthy to
the infected state of node i depends on the number of its infected neighbours, where
E[Xi(t)Xj(t)] 6= E[Xi(t)]E[Xj(t)]. On the basis of that assumption in the simulator,
we guess that this difference will cause discrepancies between the simulation results and
the theoretical results.

3.2. Numerical Simulations

In order to have an overview of the non-Markovian SIS spreading phenomenon with
the cure time R following a general distribution and to verify the theoretical results
in previous researches [33, 35], we first simulate the spreading process and analyze the
prevalence based on the simulator to observe how many nodes will get infected at the
metastable state [37]. Besides, for finite systems, it is difficult to find the phase transi-
tion for numerical simulations. Therefore, we second focus on the critical point which
separates the infected phase from the healthy phase.

3.2.1. Simulations on Prevalence

In order to make comparison with results of non-Markovian infection spread epidemics
in previous researches [33, 35], we set the curing process to Weibull distribution with
shape parameter α ∈ (0,∞). We run the simulation on a ER random network with
number of nodes N = 50 and the largest eigenvalue λ1 = 8.5232. In order to ensure the
spreading process arrive at the metastable state, the simulation runs for a long enough
time with 50 time units with cure rate δ=1 and infection rate β=1. As a consequence,
we accumulate the prevalence of infected nodes over time to observe the phenomenon of
the non-Markov SIS spreading process. The prevalence is the average fraction of infected
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nodes in the steady-state, which is denoted by y∞(τ) = limt→∞
1
N
E
[∑N

j=1Xj(t)
]
.

3.2.2. Simulations on Phase Transition

In SIS epidemics, the epidemic threshold τc separates the infected phase from the healthy
phase. However, because of random fluctuations, the absorption event can sometimes
occur even in the active state well above the critical point [28]. In a nutshell, it is
difficult to experimentally find the critical point of phase transition. Therefore, in order
to get the epidemic threshold more accurately, we do simulation with 105 realizations
and average the results. The epidemic threshold τc is defined as the border between
exponential die-out and a non-zero fraction of infected nodes at the metastable state.

In order to figure out whether the Weibullean curing process have effects on the phase
transition, the simulation aims to find the epidemic threshold with various distribution
of curing process, determined by the shape parameter α. We first set the curing process
to Weibull distribution with shape parameter α, ranging from 10−1 to 105. We run the
simulation on a ER random network with number of nodes N = 50 and λ1 = 8.5232. In
order to observe whether the SIS epidemics with non-Markovian curing processes have
obvious phase transition, we first did simulations with different Weibull distributions
and focus on the curve of prevalence changing with the epidemic threshold τ = β/δ.

According to the analysis in [33], in the case with infection processes following the Pois-
son distribution and curing processes following any distribution, the theoretical NIMFA
epidemic threshold is 1/λ1 as classical Poisson SIS process. Thus the epidemic threshold
is only determined by the underlying network, which will not be influenced by the dis-
tribution of the curing process. However, the simulation results have conflict with that
theory.

To further understand the impacts of different distributions of curing time R on the
critical points of phase transition. The second step of the simulation focuses on the
relationship between shape parameter α and the epidemic threshold at critical point.
In general, the simulation runs for a long enough time with 50 time units with the
cure rate δ =1. We consider the average of the maximum and minimum prevalence of
the last complete time period as the main output value with specific infection rate β.
And the prevalence is obtained by averaging over 105 realizations of simulation with all
nodes infected initially to prevent the inaccuracy caused by the early die-out. Because
the epidemic threshold τc is defined as the border between exponential die-out and a
non-zero fraction of infected nodes in the metastable state. By fixing the value of shape
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parameter α, we gradually reduce the value of infection rate β with the interval of 0.01
and we consider the process is die-out when the average prevalence is less than 0.1%.
When the prevalence arrive at the range between [0.09%, 0.11%], we think the ratio of
τ ? = β/δ is the epidemic threshold of this process. Thus, the first infection rate that
causes the process to become a die-out process is the value at critical point. Then, we
can get the distribution of τ ? corresponding to various shape parameters α from 10−2

to 105.

Third, in order to rule out the impact of different network typologies to the epidemic
threshold. we repeat the same procedure as the second step on various networks, in-
cluding the BA scale-free network and regular graph. Besides, in order to explore the
impact of network size and link density on epidemic threshold distribution, we run the
simulations on regular graphs with various number of nodes and degrees.

Last but not least, since we only change the infection parameter α in previous sim-
ulations, there may exist large fluctuations and errors of simulation results when the
infection rate is too small. In order to rule out the effects of simulation errors, we repeat
the second simulation on the ER graph with fixed infection rate β =10 and reduce the
curing rate to find the critical value at the epidemic threshold. Thereby, we can similarly
get the distribution of the epidemic threshold at critical point, which is corresponding
to various shape parameters α from 10−2 to 105.

3.3. Performance Analysis for Shape Parameter α ∈ [0.2, 10]

According to the simulation settings in subsection 3.2, we analyze the data obtained from
simulations in this section. Observing from the data, we find that the theoretical results
are more practical for exponential-like distributions, whose shape parameter within a
certain range α ∈ [0.2, 10]. The detailed analysis will be presented in the following.

Figure 3.1 shows the prevalence y∞(τ) of infected nodes on an Erdős-Rényi (ER) Random
Graph Gp(N) with N = 50 nodes and number of links L = 190, versus the time for
various α smaller than 10. The average steady state fraction increases with increasing
α, which approaches 0.85. Figure 3.1 also illustrates that the average fraction y∞(τ)

has more violent fluctuations at the beginning with α increasing. And when the number
of infections is approximately equal to the number of cures, the average fraction y∞(τ)

becomes steady, which is approximately equal to the final average fraction of Poisson
process with α=1. Thus, when shape parameter α is larger than 0.2 and less than 10, the
spreading process can arrive at the meta-stable state with same prevalence of classical
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Markovian SIS process. In conclusion, when the shape parameter ranges from 0.2 to 10,
the cure time R distribution is exponential-like. The NIMFA conclusions are applicable
to these cases.
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Figure 3.1: The prevalence over time on ER random graph with the network size N = 50 and number
of links L = 190 and shape parameter of Weibull distribution belongs to 0.1≤α≤10

Figure 3.2 depicts that when shape parameter belongs to the range from 0.2 to 10, the
curve shows a sharp phase transition from healthy state to infected state. Thus, these
cases exist the epidemic threshold and the theoretical epidemic threshold τc = 1/λ1 =

1/13.6229 ≈ 0.0734 provides a lower bound to the simulation results. To conclude, when
the shape parameter of cure time R distribution ranges from 0.2 to 10, the theoretical
conclusion are applicable to those cases.
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Figure 3.2: The prevalence over ratio of epidemic threshold τ? on ER random graph with the network
size N = 500 and the largest eigenvalue λ1 = 13.6229 and shape parameter of Weibull distribution
belongs to 0.2≤α≤10
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3.4. Performance Analysis for Shape Parameter α ∈ (0, 0.2]

According to section 3.3, the red line (line close to time axis) illustrates that, when the
shape parameter α is smaller than 0.2, the prevalence at the metastable state cannot
arrive at the same value as Markovian SIS epidemic process. It is necessary to further
understand how the phase transition was effected by different distributions of curing
time R. The detailed analysis is presented in the following.

3.4.1. Effects on Phase Transition

Based on the simulations on phase transition, figure 3.3 indicates that, when the curing
process follows Weibull distribution with shape parameter α is smaller than 0.2, the
prevalence at critical point does not have a sharp phase transition between the healthy
state and the metastable state. Comparing with cases close to Markovian SIS process,
the prevalence with super small shape parameters grows pretty slowly with the effective
infection rate τ .
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Figure 3.3: The prevalence over ratio of epidemic threshold τ? on ER random graph with the network
size N = 500 and the largest eigenvalue λ1 = 13.6229 and shape parameter of Weibull distribution
belongs to 0.1≤α≤10

Therefore, in order to understand how the distribution of curing time R affect the phase
transition, we need to further find out the relationship between the shape parameter α
and the critical point τc of phase transition, which is shown in Figure 3.4. Here we define
the critical point τc as the border between exponential die-out and a non-zero fraction
of infected nodes in the metastable state.



3.4. Performance Analysis for Shape Parameter α ∈ (0, 0.2] 25

 !"

"!#

"!$

"!%

"!&

"!"

'
(
)
*
+
,
-
.
)
/
-
0
*
'
(
1
)
2
(
3
4
.
*
5

6

"!   "  ""  """

74,(8*9

*+:*;18,(*<-=(*>(8?;-?;*>@1-?;*:8=)
*+:*;18,(*<-=(*>(8?;-?;*A?B)0=-3?*:8=)
*=()31)=-084*C84@)*3B*+,-.)/-0*'(1)2(34.

*****DEF"*GE#!F&H&

Figure 3.4: The epidemic threshold distribution with 0.08≤α≤1000. Comparison between changing
infection rate and changing curing rate on ER random graph with N = 50 and λ1 = 8.5232

Figure 3.4 shows that the distribution of epidemic threshold τ ? = β/δ over the shape
parameter α within the range from 0.01 to 1000. The blue line shows a steep decline
with α decreasing from 0.01 to approximately 0.18 and the curve approximately arrives
at the lowest point with α = 0.18, and after that, the curve gradually increases and
eventually trend to be stable even with a large value of α. Comparing with the case that
changing curing rate, both lines approximately show the same distribution and have the
same lowest point.
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Figure 3.5: The epidemic threshold with 0.08≤α≤1000 on three kinds of networks: the BA scale-free
network with the network size N = 500 and the largest eigenvalue λ1 = 11.9944

Figure 3.4, 3.5 and 3.6 show that the epidemic threshold τ ? = β/δ distribution simulated
on different networks. It depicts that all curves have approximately the same trends:
the epidemic threshold decreases in the range of α from 0.01 to 0.18. And they all have
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Figure 3.6: The epidemic threshold distribution with 0.08≤α≤1000 on regular network with various
number of nodes N and various degree k

the lowest value at shape parameter α = 0.18 and finally trend to be stable. Besides,
Figure 3.6 depicts that even on the regular graph with different number of nodes and
degrees, the epidemic threshold τ ? = β/δ has similar distribution. Three lines decrease
first and arrive at the lowest point at approximately shape parameter α = 0.18, and
lines rise up slowly and trend to be finally stable.

To conclude the above results, when the shape parameter is smaller than 0.2, the distri-
bution of curing time R will affect the prevalence of entire processes and the epidemic
threshold at critical point. Moreover, the smaller the shape parameter it is, the larger
epidemic threshold will be. But how exactly the distribution affect the prevalence and
epidemic threshold? The details will be discussed in the following.

3.4.2. The Dramatic Effects of the High-peak and Heavy-tailed

Distribution of Curing Time

By simulating with different shape parameter α, we find the number of infected nodes
changes dramatically within a short period of time as shape parameter α changing and
some processes could even die out at the beginning stage. Thereby, it will finally affect
the prevalence at the metastable state.

Figure 3.7 depicts the percentage of die-out processes within all realizations. The curve
is obtained from simulations on a ER network with the network size N = 50. Figure 3.7
illustrates that with shape parameter get smaller, the percentage of die-out processes
get larger. Meanwhile, we can see that when the shape parameter α is larger than 500,
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Figure 3.7: The percentage of die-out processes with 105 realizations over shape parameter α ranging
from 0.05 to 104

the percentage of die-out processes becomes larger with the rising shape parameter α.
This condition will be discussed in next section. In summary, a large amount of die-out
processes lead to only a small percentage of infected nodes survive at the beginning
and finally leads to a low prevalence at the metastable state. Thus, we can conclude
that, when the shape parameter α is smaller than 0.2, a large number of infected nodes
get cured immediately at the beginning of the simulation, which directly leads to the
existence of a large proportion of die-out processes and ultimately affected the prevalence
at the metastable state.

In Subsection 2.3.1, the Weibull distribution over various α shows that when shape
parameter α is smaller than 0.2, it looks like an exponential distribution. The probability
of small time intervals increases as a power law, which is proportional to xα−1 [32]. Thus,
in order to clearly compare the probabilities of small intervals with different Weibull
distribution, we accumulate the percentage of interval time which is smaller than 0.05.
The differences among α = 0.1, α = 0.05 and α = 0.01 are shown in Figure 3.8.

When shape parameter α is smaller than 0.2, the distribution of curing time R has a
high peak at short curing interval and a heavy tail of long curing time. Moreover, with
α decreases, the peak get higher and tail get heavier. We first choose an extreme small
curing time 0.05. Figure 3.8 shows that the percentage of extreme short time drops with
α increases from 0.01 to 0.1. In the case of α = 0.01, the extreme short time can even
reach 62.11%. To sum up, more than 50% curing events will happen within extreme
short time.
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Figure 3.8: The percentage of curing events with interval time smaller than 0.05. Comparison among
α = 0.1, α = 0.05 and α = 0.01

In our simulations, all nodes start with infected states and get random curing time within
a small interval. Therefore, a large percentage of nodes will get cured within extreme
short time interval. This condition may cause all infected nodes getting cured in some
realizations, so the spreading process will die out immediately at the beginning. Here we
denoted this condition as initial condition. Thus, these initial conditions will influence
the final simulation results.

However, does the non-Markovian curing process only affect the initial condition? Is
there any other conditions are influenced by the distribution of curing time R? In order
to figure out the answer of these questions, we run the simulations to get the prevalence
of non-die-out processes. In this simulation, we only accumulate the prevalence of non
die-out processes among 105 realizations over time. Similarly, we simulate on the ER
random network with number of nodes N = 50 and λ1 = 8.5232. In order to ensure the
spreading process arrive at the metastable state, the simulation runs for a long enough
time with 50 time units with curing rate δ=1 and infection rate β=1. In order to exclude
the effect of initial die-out processes, we only accumulate the average prevalence of initial
non die-out processes. Figure 3.9 and 3.10 show the comparison between prevalence of
all processes and prevalence of non die-out processes.

Figure 3.9 shows that, when shape parameter is smaller than 0.1, the prevalence cannot
arrive at the same value as Markovian SIS process. While Figure 3.10 depicts that the
prevalence of non initial die-out processes can reach the same prevalence of case with
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Figure 3.9: The prevalence of all processes over 105 realizations on ER network with N=50 and L=190
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Figure 3.10: The prevalence of non initial die-out processes over 105 realizations on ER network with
N=50 and L=190

α = 1. Thus, ignoring the effect of the initial condition, the non-Markovian curing
process does not influence the prevalence of non die-out processes.

Furthermore, we need to figure out whether the effect on initial condition will lead
to changes on the critical point of phase transition. we run the simulation on phase
transition with only considering non die-out processes. Figure 3.11 illustrates that the
epidemic threshold of all processes and non die-out processes comparing with theoretical
epidemic threshold. The curve of non die-out processes shows that, when shape param-
eter α is smaller than 0.2, the epidemic threshold is close to zero. That means even with
a low infection rate, there still exists a small number of nodes in infected state at the
metastable state. And the curve increases when α grows from 0.2 to 1. And when α is
larger than 1, the curve of non die-out processes get closer to the curve of all prevalence.
Therefore, the initial condition only has influence on the epidemic threshold of cases
with shape parameter smaller than 0.2.

The epidemic threshold of case with α < 0.2 is close to zero, which means there exists a
small percentage of nodes surviving at the metastable state, even with a small effective
infection rate. And that condition can be explained by heavy-tailed characteristics of
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Figure 3.11: The epidemic threshold distribution with 0.1≤α≤1000. Comparison between all processes
and non die-out processes on ER random graph with N = 50 and λ1 = 8.5232

curing time distribution. Figure 3.12 shows that, the percentage of time interval longer
than 10 is 35.94%, 32.56% and 28.39% with shape parameter α = 0.01, α = 0.05

and α = 0.1 separately. Thus, with smaller the shape parameter, the percentage of
extreme long time interval get larger. That means there always exist a small percentage
of infected nodes have a enough long curing time to become healthy, so they can keep
infected until the metastable state. Just like the hepatitis B virus (HBV) [13], which has
a very long period to get recovered and a low probability to successfully infect others.
but once their neighbors infected, they could also have an extreme long recovering period
and slowly spread to others. In this way, virus can keep survive for a long time. And
that’s the reason why only a small group of nodes can keep infected at the metastable
state.
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Figure 3.12: The percentage of interval time larger than 10. Comparison among α = 0.1, α = 0.05 and
α = 0.01

3.4.3. Summary of Dramatic Effects

To sum up, the impacts of non-Markovian curing processes mainly take up two aspects.
On the one hand, the impact on the prevalence. The high peak of Weibull distribution
causes a large percentage of nodes getting recovered at the beginning, which influence
the initial condition of the entire spreading process and further affect the prevalence at
the metastable state. On the other hand, the impact on the epidemic threshold. The
heavy-tailed characteristics of Weibull distribution with shape parameter smaller than
0.2 causes a small group of nodes have an extreme long curing time and keep infected
state for a long period. This spreading mode makes a small percentage of nodes survive
at the metastable state.
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3.5. Performance Analysis for Shape Parameter α ∈ [10,∞)

Considering the case that the shape parameter α is larger than 10, Figure 3.13 indicates
that when α � 1 (e.g. α=10 or 100 or 1000), the average fraction y∞(τ) all have a
violent fluctuations at the beginning. And the steady-state average fraction decreases
with the shape parameter α increases.
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Figure 3.13: The prevalence over time on ER random graph with network size N = 50 and number of
links L = 190 and shape parameter α=10, 100, 1000

That’s because when α > 1, the Weibull distribution is Gaussian-like. When α is
large enough, a large percentage of cures concentrically occur at the same interval.
Therefore, a large fraction of infected nodes are cured at the very beginning at the same
time interval, and less infected nodes left when α increases, which resulting in a lower
prevalence y∞(τ) at the steady state. And that condition is same with shape parameter
smaller than 0.2, a large amount of infected nodes get recovered concentrate at the same
time. Figure 3.14 depicts the percentage of curing time belongs to [0.99, 1.01] of case
α = 10, α = 100 and α = 1000. It shows that with α = 10, 7.35% nodes can be
seen as get recovered at the same time. And in the case of α = 1000, almost 99.86%

infected nodes get recovered at the same time. Thus, with shape parameter α increases,
the percentage of infected nodes is growing up, thus leading to a smaller percentage of
processes survive at the beginning. Figure 3.7 also shows that the percentage of non
die-out processes increases with α increases from 500 to 10000. To conclude, when the
shape parameter α is extremely large, the initial condition also affected by the focused
curing at the first time unit.
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Figure 3.14: The percentage of interval time within [0.99, 1.01]. Comparison among α = 10, α = 100
and α = 1000

Same as the experiments in 3.4.2, we ignore the influence of die-out processes on preva-
lence and collect data from simulation. Figure 3.15 and 3.16 show that, ignoring the
effect on initial condition, the non-Markovian curing process does not influence the
prevalence of non die-out processes.

Figure 3.15: The prevalence of all processes over 105 realizations on ER network with N=50 and L=190

Figure 3.16: The prevalence of non initial die-out processes over 105 realizations on ER network with
N=50 and L=190
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Figure 3.17 depicts that all infected nodes will be cured at the same time. That’s because
when α→∞, the Weibull distribution is approximates to a pulse, which means that all
the nodes will get cured at the same interval. On the basis of special characteristic of
pulse distribution, this strategy can be used to suppress the spreading on some extents,
which will be introduced in the chapter 4.
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Figure 3.17: The prevalence over time on ER random graph with network size N = 50 and number of
links L = 190 and shape parameter of Weibull distribution is infinite

3.6. Discussion

Based on above simulations and analysis, main effects of non-Markovian curing processes
can be summarised into two aspects.

The first aspect is that synchronous curing can suppress spreading on networks. Ac-
cording to above sections, when the shape parameter α is extremely small (smaller than
0.2) or extremely large (larger than 10), there exists a high probability that nodes have
similar curing time. In the simulation, all infected nodes synchronously start dynamic
spreading processes, which causes a large percentage of nodes get covered at the same
time or even all nodes become healthy, thereby first suppressing the spreading processes
from the initial state. Similarly, in the process of node getting reinfected and re-cured,
a large percentage of nodes get synchronous curing will also inhibit the spreading of
disease. If we can control the successful curing probability in some extents, it could
effectively suppress the spreading of virus and save medical resources. The detailed
discussion will be presented in Chapter 4.

The second aspect is that when shape parameter α is pretty small, the heavy-tailed
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characteristics of curing time distribution leads to a special spreading phase that infected
nodes have pretty long curing time and low infection rate. Due to the long period of
curing, infected nodes can try to infect their neighbors with a long time and in case
some of its infected neighbors also have long curing time, the virus can keep surviving
for pretty long time. This spreading mode could explain some real virus spreading
phenomenon. Though the number of infected nodes is small, it can keep viruses alive
for a long time. For example, the initial infection of hepatitis B virus (HBV) [13] rarely
results in death and it can spread until the disease get recovered. In this way, hepatitis
B virus keeps alive among a small percentage of people [38].

However, there exists some limitations on numerical simulations. First, due to simula-
tions mainly on finite network with fixed topology, the simulation results will definitely
have numerical difference. Figure 3.4 and 3.5 show that, when shape parameter α is
larger than 1, the epidemic threshold τ ? = β/δ is slightly higher than theoretical value
of τc = 1/λ1. And with the increasing of shape parameter α, the epidemic threshold τ ?

shows a slight increase and trend to be steady. Besides, although when shape parameter
α ∈ [0.2, 10], the effect of non-Markovian curing processes on prevalence and epidemic
threshold is slight or even can be ignored in this case. This range can be changed due
to different sizes and typologies of underlying networks. But there is no doubt that,
when shape parameter is pretty small and pretty large, the above two impacts of non-
Markovian still exist.





4
Pulse Curing Strategy

As we discussed in Chapter 3, when the shape parameter α of Weibull distribution
approaches to infinite, the SIS process can be seen as a SI process with periodically
curing process. In this process, each node is spontaneously infected by a Poisson process
with rate β. And in the pulse curing strategy, a synchronized curing process happened
periodically with the successful probability p < 1. That means p percentage of infected
nodes will be cured in each interval. Therefore, if p = 1, then the whole process converges
to the all-healthy state.

In this chapter, we theoretically analyze the pulse curing effects under the mean-field
theory to obtain the epidemic threshold. Furthermore, we point out that when p =

1− 1/e ≈ 0.632, the pulse curing is equivalent to a Poisson curing process [39].

4.1. Theoretical Analysis of Pulse Curing Effects

Assuming that each node is cured with rate δ, the curing happens every 1/δ time units.
So the nodes can only been cured at k/δ with k = 1,2,. . . . With the successful prob-
ability p, only a fraction p of nodes are randomly chosen to be cured within every 1/λ

time units. And each infected nodes can infect its susceptible neighbors with rate β.
Thus, the effective infection rate is determined by τ , β/δ. We present the random time
t = k/δ + t∗, where t∗ ∈ [0, 1/δ). Considering the situation that only infection happens
with t∗ 6= 0, the mean-field equation of node i is

37
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dvi (k/δ + t∗)

dt∗
= β [1− vi (k/δ + t∗)]

N∑
j=1

aijvj (k/δ + t∗) , (4.1)

where vi (k/δ + t∗) is the probability that node i is infected at time t = k/δ+ t∗ and aij
is the element of adjacency matrix of the underlying network with N nodes. Since the
correlation of the infection states between neighbors was disregarded as in the Markovian
SIS process [40], Equation 4.1 is under the mean-field equation. And because the curing
probability of each node at k/δ is p, the governing equation of the pulse curing process
is

vi

(
k + 1

δ

)
= (1− p) lim

t∗→1/δ
vi

(
k

δ
+ t∗

)
. (4.2)

In the periodically pulse curing process, equation (4.1) does not have an explicit solution
of the relationship between vi(k/δ) and limt∗→1/δ vi (k/δ + t∗) for general network. How-
ever, since we only care about the region where vi (k/δ + t∗)→ 0 to obtain the epidemic
threshold, so we can linearize (4.1) at vi (k/δ + t∗) = 0 for all i and obtain

dv (k/δ + t∗)

dt∗
= βAv (k/δ + t∗) , (4.3)

where v (k/δ + t∗) , [v1 (k/δ + t∗) , . . . , vN (k/δ + t∗)]T . The general solution of (4.3) is
v (k/δ + t∗) = eβAt

∗
C. And C = v(k/δ) is the initial value vector at t∗ = 0. Therefore,

the solution of (4.3) evaluated at t∗ → 1/δ is

lim
t∗→1/δ

v (k/δ + t∗) = eτAv(k/δ). (4.4)

Substitute (4.4) into the governing equation (4.2), we obtain

v

(
k + 1

δ

)
= (1− p)eτAv

(
k

δ

)
. (4.5)

The largest eigenvalue of (1− p)eτA is (1− p)eτλ1 . If (1− p)eτλ1 is smaller than 1, then
the infection probability v

(
k
δ

)
converges to 0 in the long run. Therefore, we can obtain
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the epidemic threshold when (1− p)eτλ1 = 1, which is

τ (p)
c ,

1

λ1

ln
1

1− p
. (4.6)

Thus, if τ < τ
(p)
c , the spreading of infection will disappear in the long run while the

spreading can persist on the network when if τ > τ
(p)
c .

Comparing with the epidemic threshold of the classical SIS process with a uniform
Poisson curing process, which is 1

λ1
, if ln 1

1−p = 1, then the pulse curing process can be
equivalent to a Poisson curing process in the traditional SIS model on any networks.
In this situation, p = 1 − 1/e ≈ 0.632. Because the curing rates δ of the pulse curing
process and the uniform Poisson curing process are the same, the pulse strategy can
only consume 63.2% of the cost of the uniform strategy to suppress the spreading.

4.2. Simulation Verification
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Figure 4.1: The prevalence of the Markovian SIS model and the pulse curing model with curing proba-
bility is p = 0.632. The simulation is implemented on a Barabási-Albert graph with 500 nodes and λ1
= 13.6229. For both models, the infection rate is β = 0.2 and the curing rate is δ = 1

Figure 4.1 illustrates that the steady prevalence of Markovian SIS process is exactly
located in the middle of the curve of the prevalence of Weibullean curing process with
curing probability p = 0.632. Therefore, the Figure 4.1 shows the conclusion that the
pulse curing strategy with 63.2% of the cost required by the uniform strategy can achieve
the same performance on the same underlying network structure. Furthermore, Figure
4.2 draws the prevalence of Markovian process and pulse curing process with curing prob-
ability p = 0.632, which could prove that the conclusion is invariant to the underlying
network structure.



40 4. Pulse Curing Strategy

·

 !"

"!#

"!$

"!%

"!&

"!'

"!(

"!)

*
+
,
-
.
/
,
0
1
,

)'"")"""2'""2""" '"" """'"""

345,

6780,9:;+<8:49=8> ? )!&22#8@0A,194;08+.9,8B?"!288CD+,8+.9,E? 
8*/DF,8CD+40G8:49=8H?"!&)2
8I.+<;-4.08J@J8H+;1,FF

Figure 4.2: The prevalence of the Markovian SIS model and the pulse curing model with curing prob-
ability is p = 0.632. The simulation is implemented on a Erdős-Rényi Random model with 500 nodes
and the largest eigenvalue λ1 = 11.9944. For both models, the infection rate is β = 0.2 and the curing
rate is δ = 1
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Figure 4.3: The steady prevalence of three pulse curing models with curing probability are p = 0.3,
0.632, 0.8. The simulation is implemented on a Erdős-Rényi Random model with 50 nodes and the
largest eigenvalue λ1 = 8.5232. For three models, the infection rate is β = 1

In order to observe the effect of the successful possibility p on the epidemic threshold of
non-Markovian curing process, we pay attention to the relations between the effective
infection rate δ with the prevalence at steady state. For a instance, we simulated the
pulse curing process on a ER network with 50 nodes. The star markers presents the line
of simple SIS spreading process with Markovian infection and curing process. Figure
4.1 illustrates that when the successful probability of pulse curing strategy is equal to
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0.632, the average prevalence is same with the simple Markovian process. Therefore, it
shows that the pulse curing strategy can efficiently save the cost of the uniform strategy
to restrain the spreading.

While in the pulse curing strategy, the coverage of successful possibility p < 1, since
if p = 1, then synchronous curing kills the spreading immediately. And for the reality
perspective, due to the limited resource or other complications, the coverage of successful
probability can not achieve full coverage with p = 1. Considering the effects on the
performance of pulse curing process with p ∈ [0, 1), Figure 4.3 plots the performance
with successful probability selected on the both sides of p = 0.632. Both cases are
simulated on the same Erdős-Rényi random graphs with same spreading process. With
the successful probability p = 0.3, which is smaller than 0.632, the epidemic threshold is
smaller than the Markovian process, while the steady prevalence is much larger than the
general process. Conversely, with successful probability p = 0.8, the steady prevalence of
pulse curing process is smaller than the Markovian process, but the epidemic threshold
is much larger. That means more curing resources are consumed. Therefore, the pulse
strategy is optimal when the successful probability is equal to 0.632.

4.3. Optimal Plan of Pulse Strategy

According to equation (4.6), we can get the relation between effective infection rate τ
with the optimal successful curing probability p, which is shown in Figure 4.4 in red line.
We consider the red line as the optimal plan of pulse strategy for suppressing the viral
spreading. Figure 4.4 and 4.5 also present the changing process of prevalence at the
metastable state starts with specific effective infection rate τ and specific curing proba-
bility p. Therefore, we can get similar optimal plan in case we know the characteristics
of the underlying networks. If we know the effective infection rate of a viral spreading
process, according to the red line, we can choose the optimal successful curing proba-
bility p to suppress the spreading. Furthermore, if we want to control the prevalence at
the metastable state, it is also convenient to set up curing possibility p and even change
effective infection rate τ to suppress disease spreading and save medical resources.
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Figure 4.4: Heat map with optimal plan over time on ER random graph with N = 50 and the largest
eigenvalue λ1 = 8.5232

Figure 4.5: Heat map with prevalence at the metastable state over time on ER random graph with
N = 50 and the largest eigenvalue λ1 = 8.5232



5
Conclusions and Future Work

This chapter will summarize outcomes of this work and provide suggestions for further
investigation. Section 5.1 presents conclusions based on our results and discussions, and
Section 5.2 provides suggestions for future research.

5.1. Conclusions

In this thesis, we focus on the effects of non-Markovian curing processes on the spreading
performance. Based on numerical simulations on finite networks, two dramatic impacts
are shown in the research. The first impact is that synchronous curing can suppress viral
spreading on networks and further optimal setting of curing probability can effectively
save the medical resources. The second impact is that the heavy-tailed characteristics
of curing time distribution leads to a spacial spreading phase that infected nodes have
pretty long curing time and keep survive among a small group of individuals. This
spreading of hepatitis B virus (HBV) is similar to this mode. Comparing with the theo-
retical conclusion that the epidemic threshold is τc = 1/λ1 if infection process following
Poisson process with any distribution of curing time R, the non-Markovian curing pro-
cesses have dramatic effects on the performance of viral spreading. With the shape
parameter α getting pretty smaller or pretty larger, the effects are more obvious.
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5.2. Recommendations for Future Work

This thesis is mainly a systematic study of the effects of non-Markov curing processes
on SIS epidemics based on numerical simulations. Although we can find dramatic effects
through the simulation results on prevalence and phase transition, the theoretical ex-
planations are still required. Figure 3.4, 3.5 and 3.6 present that the epidemic threshold
arrives at the lowest point when shape parameter α is approximately equal to 0.18. It
is difficult to explain this performance only from the analysis, theoretical deviation and
verification are still needed to support this result. Furthermore, if we can get the rela-
tionship between this lowest point of epidemic threshold value and other factors from a
theoretical point of view, we can apply this conclusion in other cases. For example, when
we know an underlying network, we can promote the spreading with applying the cor-
responding shape parameter at lowest epidemic threshold. Finally, a real-life epidemic
may follow a more complex epidemic model. If both the infection process and curing
process are following non-Markovian process, it could be quite interesting to know the
spreading phenomenon on networks.
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A
Step Verification of Theoretical Conclusions

We reproduce the theoretical derivation results of each step in combination with the
simulations to compare the simulation results with theoretical derivation results on the
basis of the deviation process in [33], which is also described in details in 2.3.2.

Procedure :
For the simplicity and generality of the calculation, we apply the gamma distribution
to distribute the cure time in this simulation. And ξ is the shape parameter of gamma
distribution. According to (2.23), the average number of times that node j tries to
infect node i is equal to E[M ], which should equal to the rate ratio of τ = β

δ
. Based

on the definition of E[M ], we first count the average number of times that an infected
node infects one of its neighbors within a random cure interval, which is the simulation
results of E[M ]. On the basis of 105 realizations, we can verify the simulation results
by comparing with the equation (2.23). At the same time, we run the simulation with
three different infection rates β = 0.5, 1 or 2. Besides, in order to figure out the effect
of various cure time distributions, we plot the relationship between E[M ] and shape
parameter ξ, which is shown in Figure A.1. Since only when the parameters are too
small, the simulation results are far from the theoretical results, so we only consider the
case where the parameters are less than 0.1.

Second, in order to explore the impact of simulation time S on simulation results, ac-
cording to the equation 2.21 and the probability generating function of gamma function,
we can get the value of E[M ] based on calculation. Therefore, we assume a node is
linked to an infected node and this node starts with the susceptible state. During the
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simulation, we assume the node can be infected instantly and the cure time following
the gamma distribution with different shape parameter ξ = 1, 0.01, 0.001 and cure rate
δ = 1. Set with different time period S, we can get the number of cure events occurred
during S, which is shown in Figure A.2. By comparing the calculation results and sim-
ulation results, we can figure our the effect of simulation time S on results, which is
shown in Figure A.3.

Third, In order to exclude the effect of infection process, we focus on the value of the
number of infected periods. With setting cure rate δ = 1, the number of infected periods
is equal to vjS/E[R] = vjS. On one hand, we account the number of infected periods
in simulator with different infection rate β ∈ [0.1, 1]. One the other hand, based on the
simulation setting on Matlab in the second step, we fixed time S as a large time interval
S = 105 and calculate the number of infection periods with infection rate from 0.1 to 1.
Comparing two results from Matlab and simulator, we can know the effect of infection
process on prevalence.

Performance :
The first step simulates the number of times that node j tried to infect node i during
each infected period of node i (also the recovering period of node i). And based on
results of 105 realizations, Figure A.1 illustrates the average number E[M ] of times
over different shape parameters ξ ranging from 0.01 to 0.1. Simulating with cure rate
δ = 1, Figure A.1 shows that E[M ] is equal to the value of τ = β

λ
, and E[M ] does

not change with different distribution of cure time R. Thus, we can prove that in the
N-interwined mean-field approximation, the simulation results of E[M ] are consistent
with the theoretical results.

The second step of simulation is to inspect the effect of simulation time S on the average
number E[M ] of times. Since the simulator assumed when the spreading process runs
for a long enough time with 50 time units, the whole process is in the meta-stable state.
At the same time, the number of times of infection events calculated by equations (2.15)
and (2.21) in a certain period of time S is compared with the simulation results.

Therefore, Figure A.2 plots that the process with a smaller shape parameter has a larger
number of infection events occurred within short period of time S. And with the period
of time S is larger than 103, three processes have the same number of infection events
happened. Besides, the simulation results can be approved by the calculation results
based on equation (2.15) and (2.21). To conclude, the simulation results is consistent
with the theoretical results. What’s more, the number of infection events with different
cure-time distributions within a long enough time period S have the same number of
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Figure A.1: The average number of E[M ] over various shape parameter ξ ∈ [0.01, 0.1] based on 105

realizations with cure rate δ = 1
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Figure A.2: The number of infection events over time

events happened. According to the Figure A.2, when the length of interval S is not
long enough to make spreading process spreading into meta-stable state, S will slightly
influence the prevalence. Since the simulator assumed the process will arrive at the meta-
stable state after 50 time units. Thus, The result of process with small shape parameter
α is not exactly the prevalence at the meta-stable state. To conclude, enough long time
interval S is one of conditions to guarantee that the simulation results is consistent with
theoretical results.

Based on the performance of the second-step simulation, we compare the number of
infection periods from simulator and experiment on Matlab. Figure A.3 shows that
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Figure A.3: The number of infection periods with different infection rate.

the result of experiment fluctuates around the account value from simulator. And both
results are not influenced by the infection rate ranging from 0.1 to 1. Therefore, we
can exclude the affect of infection process. And we set the infection rate β = 1 for the
convenience in the following.

To conclude the above three experiments, ignoring the slight influence of time S, we
can find the factor which makes the differences between the simulation results and the
experimental results. And the simulation results is consistent with each deviation step.
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