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PREFACE

The cover photo is cited in [1]. The presented structure and patterns could well be a slice of an axial prostate
MRI scan, distorted through the eyes of the artist. The colorful circles could resemble a representation of the
various regions of interest within the prostate. Art has been and should keep being an inspiration for scientific
progress.
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1
INTRODUCTION

Radiomics is a newly emerging scientific field. Its purpose is to infer phenotypic differentiations between can-
cer lesions or healthy tissue. This can be achieved by taking into account features such as patient age and sex,
or computed features such as statistical features or filters. Computed features can be extracted from medi-
cal images acquired by any modality. Commonly reported modalities include Magnetic Resonance Imaging
(MRI), Computed Tomography (CT), Positron Emission Tomography (PET), Single Photon Emission Tomog-
raphy (SPECT) and Ultrasounds (US). Fusion of multiple modalities is not uncommon. Applications concern
many types of cancer, such as brain or lung cancer. One of the applications of radiomics is the attempt to
classify prostate cancer (CaP) from MRI images, which is the focus of this thesis. This is very important, as it is
aimed towards early diagnosis of aggressive prostate cancer which can lead to effective personalized treatment
plans. Many efforts to this direction are reported in literature, where various feature types and classification
methods are suggested. Although results reported in literature are often great, clinical application is vastly
limitted. A possible reason for that is that the reported results, especially for MRI-based studies, might strongly
rely on the available datasets, as well as the validation methods.

A common pipeline for prostate cancer MRI radiomics (CaP-MRI) is to extract features from MRI sequences.
These features are subsequently used to train a model, which is able to diagnose cancer on a specific level of
accuracy. Several methods are proposed in literature, however, in all of the reported cases, both training and
testing data is obtained from a single clinic. This implies a single acquisition protocol and scanner manufac-
turer. The point of concern is that while computational radiomic features are highly quantitative, MRI is not.
Therefore, it is questionable whether similarly good results could be achieved on data from another clinic. In
this case, the scalability of the model’s clinical application would be severely deterred.

This study tries to assess and reproduce results reported in literature. A custom built software routine extracts
the most commonly reported features in literature. This comprises a set of 198 features for each pixel of the
axial T2 sequences of two independent datasets. The following will be examined:

• Performance and prognostic value of the reported features

• Performance of different classifiers

• If distinction in peripheral zone improves results compared to examination of the entire prostate

• Finally, the potential to apply a model trained on a data from a single clinic on data from another one

This report follows the outline explained below:

1. A brief scientific review will clarify the nature of the most commonly reported features, as well as imaging
modalities.

2. A brief review of the currently available literature on the subject will reveal the quality of the reported
results and the fact that a totally independent dataset is nowhere used.

3. A discussion over the available datasets, as well as methods that were used to extract the features and
evaluate classifier performance is then presented.

4. Results are discussed and conclusions are drawn.

1



2 1. INTRODUCTION

MOTIVATION

Prostate cancer (CaP) is the most frequent form of cancer for men in the developped countries. At the same
time, it is the third leading cause of cancer related death for men in the same group of countries [2]. The
extremely high rates of incidence and mortality globally dictate that action is needed. CaP-MRI radiomics are
aimed towards an in time and effective diagnosis.

Concerning diagnosing practices, in past the urologist took random samples to investigate the prostate. More
recent, imaging techniques have been used to improve the diagnostic process. The radiologist uses different
sequences in combination in the diagnostic process since different characteristics can be inferred from the
sequences. For the anatomical location the T2 sequence is used, where tumors are often represented by a
lower signal intensity than the environment. With the Diffusion weighted sequence (DWI), tumors that consist
of closely packed cells will be visible due to the restricted water motion. With the DCE (Dynamic Contrast
Enhanced) MRI leaky vessels of tumor tissue can be detected.

Images can also be used to guide the sampling process during biopsy taking TransRectal Ultrasound guided
biopsies (TRUS) or MRI guided biopsies. However, the taking of biopsies is an invasive procedure with the risk
of causing infections. Moreover, lesions can be missed [3].

The radiomics hypothesis, presented in detail in 1.2 suggests that a tumor’s phenotype can be inferred by
imaging data, in a non-invasive way. The attempt to use quantitative image features in deciding about a tu-
mor’s stage is not only limited in diagnosing a tumor. It is also possible to classify tumors according to their
aggressiveness, compute the possibility of metastasis, assess and even maybe foresee treatment response or
recurrence. The aforementioned capabilities, open a new way to personalized treatment plans [4–6]. This
could potentially lead to great treatment efficiency. Moreover, this sets a non-invasive and zero-exposure way
to diagnose. All these in turn, set the motivation for those efforts.

THE RADIOMICS HYPOTHESIS

Each solid tumor presents different characteristics of genes and genes’ expression. According to these ge-
nomic differentiations, response to different kinds of treatment approaches might greatly differ. Examining
the phenotype itself would sometimes be a highly invasive procedure [7]. The advancement of machine learn-
ing techniques, combined with computational power that emerged in recent years, gave birth to a whole new
possibility, that of radiomics.

Radiomics hypothesis states that a solid tumor’s phenotype can be inferred by medical imaging data [8, 9].
This can be achieved from information acquired by any modern imaging modality (PET, CT, MRI, US, SPECT).
Efforts to evaluate the prostate by applying image assessment techniques according to this hypothesis have
been a topic of study since the 80’s [10]. Some steps have been taken towards the confirmation of this state-
ment. Regarding prostate cancer, according to [11], it has been shown in [12, 13] that an actual correlation
between MRI-image data and the tumor’s Gleason Score is actually present.

THE RADIOMICS PIPELINE

The radiomics pipeline involves obtaining a set of medical images, segmenting the Regions of Interest (ROIs),
extracting the features and finally analyzing [8, 14]. This pipeline is common for any application besides CaP-
MR, therefore, a generic workflow outline is presented below:

• Images can be obtained by any imaging modality, such as CT and FDG-PET [6, 15, 16], that are both
used pretty often as a basis for radiomics as they both contain easily quantifiable measurements. Fur-
thermore, several MRI modalities are commonly used (such as Diffusion Weighted Imaging (DWI), T2
weighted imaging (T2W), Dynamic Contrast Enhanced MRI (DCE-MRI) and Magnetic Resonance Spec-
troscopy (MRS) [12, 17, 18]). As these images are going to be used as an evaluation set, they come from
patients’ cohorts with confirmed histopathology, which is going to be used as ground truth in the subse-
quent steps [5, 19].

• Segmentation of the ROIs that are candidate tumor voxels, can be carried out either manually or au-
tomatically. When done manually, it is usually carried out by experts, where however interobserver
variability is an issue [16]. On the other hand, there are several classical image processing approaches
suggested that could be applied to get a semi-automatically or automatically segmented ROI [20–22].
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Applications of automatic segmentation, could be a step towards a Computer Aided Software (CAD) for
cancer diagnosis and maybe aggressiveness classification [23–26].

• Radiomic features are mostly applied to extract information explicitly about the image itself, such as tex-
ture [27]. They can also be combined with functional features such as ADC maps (see 2.3) and metabolic
features, such as MRS images (see 2.2). This could provide a highly informative feature set [28]. Some
key challenges in this step include fusing information from various modalities and keeping feature space
low dimensional [29].

• Analysis consists in training a classifier with the extracted features, labeled according to the ground truth,
which consists of prostatectomies. As with features, there is a large number of classification approaches
that has been tested. Common classifiers are Support Vector Machines (SVM) [23, 24, 27, 30, 31], Adap-
tive Boosting (AdaBoost) [18, 30] and Random Forests [25], although there are also many more options,
as Neural Networks. Given the relatively small size of the currently available datasets, Neural Networks
do not seem to be the optimal solution.

DECISION OBJECTIVES-PURPOSE OF STUDIES

Study objectives in CeP-radiomics literature vary. Several subcategories can be distinguished, the most com-
mon being plain diagnosis [25, 26, 30–37]. Authors also used classification techniques to classify tumors ac-
cording to their aggressiveness and estimate the Gleason Score (GS) for prostate cancer [17, 38, 39], where the
most reliable results are reported for GS > 7. Attempts to classify according to the newly established PI-RADS
reporting system, presented in [40], are also present [18]. While most attempts adopt a single classifier ap-
proach, in [41] a cascaded classifier approach to distinguish between lower and higher GS is reported. Lowest
Gleason Score candidates are first classified against the entire sample, followed by higher GS samples. In this
way, it is deemed easier to distinguish between different GS, than address the problem at a single step aproach.
A cascaded classifier is also trained in [42], in order to distinguish between benign and malignant confounders.

By further evolving this perspective, there have been several attempts to create a complete Computer Aided
Diagnosis system (CAD). In [43] a review of all the CAD development approaches and results is provided. Ac-
cording to the authors, CADs can be distinguished in Computer Aided Detection (CADe) and Computer Aided
Diagnosis Systems (CADx). Although it is common to attempt the creation of a fully automated system, a
combined, CAD-Radiologist diagnosis plan is an option that might yield very good results [44].

From the above, it is obvious that, as radiomics are mostly used to diagnose the presence of a malignant lesion
or even to classify the aggressiveness, they can also assist in choosing between treatment options, as lesions of
different aggressiveness require a corresponding treatment plan.

QUANTITATIVE IMAGING-THE NEED FOR STANDARDIZATION

Extraction of radiomic features refers to quantitative imaging features. This implies that conclusions drawn
on a specific dataset should be reproducible. Moreover, the training of any classifier, that normally takes place
on a specific dataset, should be globally applicable. That is, if a classifier is trained on a dataset, available at a
specific clinic, this same classifier with the current training, should be able to be applied on any data, regard-
less the clinic. This also holds for images of the same patient, taken on different times or dates. This implies
independency from the imaging device, as well as imaging protocols. To this point, CT and PET provide mea-
surements that are easier to quantify than MRI. CT yields Hounsfield Units (HU) that are, within a statistical
interval, independent of the scanner. PET measurements are reported in Standardized Uptake Values (SUVs)
that follow the same principles as HUs.

MRI, however, is a modality that is hardly quantifiable [45]. In [30] it is noted that a robust feature set should
perform the same with or without preprocessing, as robust features might be features that try to exploit tex-
ture information, thus not relying directly on gray level values that might significantly vary according to de-
vice/protocol. An application of classification on features that directly rely on quantitative maps intensity
values is though not uncommon. Common preprocessing steps try to reassure this replicability, as well as to
ensure the relevancy of the calculated feature values by removing noise etc. Preprocessing steps include:

• Intensity Normalization

• Denoising
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• Registration/Segmentation

• Background Inhomogeneity/Bias Correction

INTENSITY NORMALIZATION

An initial attempt to address the issue of intensity normalization is presented in [46].Extraction of a range for
region based volume scans is carried out from a training set consisting of several volume images of the region.
Subsequently, a linear interpolation scheme is suggested that would exploit the entire dynamic range and
would normalize intensity values within this interval. According to [45], the most efficient way to normalize
for T2W gray values and achieve reproducibility, is to restrict all values within an interval of ±3σ of the mean
value and quantize to a fixed bin size. In the above,σ is the variance of gray values distribution. This technique
is applied by several authors during MRI-based radiomic features extraction [31, 47]. A novel approach to
normalization is presented in [48]. What the authors propose, is an alternative to the z-score method that is
currently widely applied. Z-score method normalizes gray values as follows:

Yi j =
xi j −µi

σi
(1.1)

Where in the above, indices i and j refer to the image type and patient respectively. An average µ has to be
calculated for each image and a standard deviation σ, so that transformed grey values have a zero mean and
unit standard deviation.

Instead, it is suggested that Z-score normalization should be carried out class-wise, where there can be mul-
tiple classes. Depending on the application, these classes could be comprised of cancer vs non cancer tissue
(which is the presented case), or even slighter discriminations. As, however, the classes cannot be a priori in
hand, an iterative implementation is suggested, where at each iteration the estimation of a voxel membership
in a class is updated. In that way, the range of values within a class is most effective exploited.

DENOISING

The noise by which MRI images are corrupted is a further issue. Raw calculated values’ real and imaginary part
that correspond to the k-space coordinates, both suffer from Gaussian noise, but the amplitude of the complex
data results in Rician noise distribution [49]. Rician distribution has the following mathematical expression:

p(Mi |A) = Mi

σ2 e−(
M2

i +A2

2σ2 )I0(
AMi

σ2 )u(Mi ) (1.2)

Where in the above, σ corresponds to Gaussian noise standard deviation affecting imaginary and real part
(with amplitudes Ai and Ar respectively) of values calculated in k-space, A is the amplitude of Ai and Ar , I0 is
the 0-th order first kind Bessel function and Mi is the i-th data point of magnitude image.

Therefore, Gaussian noise filters should be avoided [50, 51]. In [36], the Minimum Absolute Deviation (MAD)
technique presented in [52] is applied to remove the Rician noise, by which MRI images suffer. There are
several more possibilities for Rician noise denoising, like those mentioned in [53–55].

REGISTRATION

Image registration is needed both for motion correction and to register data obtained from different MR modal-
ities and also possibly even MR fusion with completely other imaging modalities, such as US and CT [36, 56].
Moreover, image registration is necessary to correspond MR images with ground truth (most often manually
registered histopathological slices [42, 57]). Although the rest of the preprocessing steps are not always present,
registration is necessary in every study.

In [23], a specialized MRI prostate registration approach is presented, based on previous works presented in
[58, 59]. The proposed method combines a global and a local transformation model. The global model is
utilized via a rigid transformation (a transformation model that does not allow for any elastic deformations,
is however simpler to implement as it contains less degrees of freedom). The local motion model, is being
described by B-splines deformation model. B-splines rely on a deformable grid of control points that adapt to
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the new shapes. Maximization of mutual information (an entropy based metric according to the voxel values’
alignment) leads in the end to registration.

Atlas based registration is another popular approach. In [60], a multi-atlas model is used. An atlas is a reference
labeled image of known anatomy, estimated as a reference. The image is first registered to each atlas separately
via a non-rigid B-spline registration procedure and then a fusion of all deformation vectors is implemented
by majority voting. There is also the option of using just one of the available atlas images, according to the
maximiztion of a similarity measure between the reference image and the corresponding atlas.

In [61], the atlas is first estimated by a set of images as an average, alongside with a probability map Ip that
epxresses the probability that a point actually belongs to the structure of interest. The demons matching al-
gorithm [62] is applied on the levels of a pyramidal decomposition (see sec. 3.3) to register the pyramid levels
to the atlas. Finally, a deformable model is initialized according to the grid dictated by the demons’ forces
calculated in the first step. This consists of an image feature model, a spatial constraint model and a statistical
shape model (SSM).Finally, an iterated procedure leads to automatic prostate gland segmentation.

Registration and segmentation is a huge chapter in literature and there are many proposed techniques. Most
of the excluded query results were excluded due to their aim to registration and segmentation of the prostate
gland, which by itself is a very interesting topic but it is out of interest for now.

INHOMOGENEITY/BIAS CORRECTION

Inhomogeneity can be described as an artifact of variation of the image intensity across the image. It can be
ascribed to “static field inhomogeneity, bandwidth filtering of the data, eddy currents driven by field gradients,
and especially radio frequency (RF) transmission and reception inhomogeneity.”[63]. Other sources are the
stochastic nature of the imaged object’s magnetic properties and shape. While the first kind of inhomogeneity
is possible to accurately bypass with frequent proper calibration and by applying proper protocols, the second
has to be dealt with great care. A popular way to handle this is presented in [64]. According to it, bias field has
an effect of the form:

v(x) = u(x) f (x)+n(x) (1.3)

Where in the above equation, u is the actual signal, f is a slowly varying bias field and n is the Rician noise.
f is considered to follow a Gaussian distribution. It is subsequently considered as the convolution product
of narrower Gaussians. Actual distribution u can then be estimated by applying the following deconvolution
filter in the Fourrier domain:

Û = F̂?

|F̂ |2 +Z 2
V̂ (1.4)

Where in the above, F̂ is the bias field estimation in the Fourrier domain, F? is its complex conjucate and V̂ is
the received signal.

Several further techniques are reported regarding this kind of correction in literature [63]. According to [65],
inhomogeneity correction should be performed after gray value standardization.

OTHER PREPROCESSING TECHNIQUES

An interesting preprocessing step, that does not actually have something to do with the properties of MRI
itself but merely the proper training of the classifier, is presented in [17]. As the classes (cancerous vs non-
cancerous) present imbalance, oversampling of the minority class or sample weighting is applied in order
to achieve balance. This is a very important step for the specific implementation, as the applied classifiers’
performance (AdaBoost and some SVM variants) strongly depend on the reported accuracies. Techniques
used to oversample are Synthetic Minority Oversampling Technique (SMOTE) [66] and sample generation with
Gibbs sampling [67].





2
MULTI-PARAMETRIC MRI

Multi-paramteric MRI (mpMRI) includes Diffusion Weighted Imaging (DWI), Dynamic Contrast Enhanced
(DCE) and T2 Weighted Imaging (T2W), while in some cases also Magnetic Resonance Spectroscopy (MRS)
is included. Although fusion of information from these modalities might be a challenging step [25], it is rec-
ommended that the combination of all these modalities can provide useful diagnostic information [68]. On
the other hand, in [69], authors suggest that fusion of several MR modalities does not necessarily improve de-
tection accuracy. This dispute however falls outside our specific area of interest, as we aim only for the assess-
ment of texture and texture related radiomic features. In general, lots of combinations of features and feature
selections have been tested. There are several feature subsets that comprise the entire feature set usually used
for CaP CAD detection. There are several components or statistics in each of these families, that comprise in
some cases a family of as many as 635 features [6]. Basic principles that concern feature extraction from the
modalities that consist mpMRI are presented below.

DCE

Througout the examined literature, DCE-MRI has mostly been applied to extract functional pharmacokinetic
features. DCE-MRI results after injecting gadolinium-based contrast agents [70]. Pharmacokinetic features
are curves that estimate perfusion of an area according to some contrast enhancement medium parameters
related to its concentration through time, such as wash-in, peak and wash-out times. Pharmacokinetic fea-
tures can be extracted either for a specific ROI or per-voxel basis [71]. There have been proposed models for
the estimation of these model based parameters (Ktr ans ), such as in [72]. Ktr ans maps is one of the most
commonly applied quantitative maps in literature, from which information other than functional is extracted.
Ktr ans (bulk transfer coefficient) is a constant that, according to [71] can be generally estimated from:

Ct (t ) = Ktr ans

∫ t

0
Cp (t ′)e−

Ktr ans
ve (t − t ′)d t ′ (2.1)

Where in the above equation, Ct (t ) is the concentration of the agent in voxel t at time t, Cp (t ) is the con-
centration of the agent in the plasma volume and finally ve is the proportional volume of the extravascular
extracellular distribution space.

It can be also estimated from the modified Tofts model, that, at the same time, allows for the calculation of vp

(fractional plasma volume):

Ct (t ) = vpCp (t )+Ktr ans

∫ t

0
Cp (t ′)e−

Ktr ans
ve (t − t ′)d t ′ (2.2)

It is however also possible to extract quantitative information from a model free Area Under the Curve (AUC)
estimation for the concentration versus time curve (IAUC60) [73, 74]. In this review, we are only interested in
caclulation of map/image features based on the DCE maps and not their functional interpretation. The most
common method would be to exploit directly pharmacokinetic map intensity values. However, it is mentioned

7
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in [75] that a blob detection technique described in [37] is used not only on Ktr ans but also on other quantita-
tive DCE-MRI maps.

Figure 2.1: Axial DCE image of the prostate of patient 01.0058 of the PCMM dataset

MRS

Another modality that often comes alongside MRI in CaP detection efforts, is Magnetic Resonance Spec-
troscopy (MRS). MRS is recommended as a useful marker in [68]. Received MR signal contains several reso-
nances that are due to the difference of specific metabolites’ concentration within a region of interest. In turn,
differences in resonance frequencies of these metabolites are due to differences in 1H concentration in the
metabolites. These metabolites are Choline (Cho), Phosphocreatine and Creatine (Cr) and Citrate (Ci), yielding
three respective spectral peaks. It is feasible to localize where this signal originates from with a very good accu-
racy in the range of 6.2 mm. From the height of the peaks, it is feasible to possible to determine metabolite con-
centration in the specific region and a high (C ho +Cr )/Ci ratio indicates presence of cancer[76, 77]. Through
the literature, MRS maps only exploit this ratio without extracting any further radiomic features. Therefore it
will not be further examined.

DWI

DWI works by applying inversed pulses. Accumulated phase for a single spin under the influence of a gradient
rectangular pulse is:

φ(t ) = γB0t +γ
∫ t

0
G(t ′) ·x(t ′)d t ′ (2.3)

Where B0 is the bias DC magnetic field, γ is the gyromagnetic ratio and G is the refocusing pulse. Under the
influence of a 180 delayed refocusing pulse, applied at a point in time t1 +∆ after the first pulse applied at t1

and both having a duration δ, the same quantity becomes

φ(t ) = γB0t +γ
∫ t1+δ

t1

G(t ′) ·x(t ′)d t ′−γ
∫ t1+∆+δ

t1+∆
G(t ′) ·x(t ′)d t ′ (2.4)

The influence of this sequence at a spin that is not moving is a zero shift in phase, as the phase accumulation
cancels out. For the moving spins, it can be shown that the signal intensity reduces exponentially according to

SI = SI0e−bD (2.5)
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Where D is the apparent diffusion coefficient and b is the diffusion-sensitizing factor, depending on the pulse
sequence properties:

b = γ2G2δ2(∆− δ

3
) (2.6)

From all the above, we can estimate apparent diffusion coefficient for the regions of interest [78]. As diffusion
coefficient is closely related to cellular density in an area, denser areas are expected to present lower diffusion.
This is the case of cancerous regions [79]. A common approach is to extract an ADC for several different b-
values. An ADC map constitutes in the interpolation of all intermediate b values on the regions of interest.
A tumorous region is expected to have a smaller slope than a healthy one [79]. Although a high b-value is
expected to have higer diagnostic accuracy [34, 75], due to hardware limitations an upper limit of b-value can
be achieved. b-value is reported in s/mm2 units and the highest values that can be currently achieved are
around 1500s/mm2. A way to bypass this issue is suggested in [80] and implemented as a part of [34]. A high-b
value can be estimated from eq. 2.5 for the acquisition of Si measurements for several different b-values. A
Bayesian Inference approach is suggested, according to which D could be estimated and subsequently a higher
b could be extracted. Throughout the examined literature, ADC maps is basically the feature extracted from
DWI.

Figure 2.2: Axial DWI image for b=100 of the prostate of patient 01.0058 of the PCMM dataset

An alternative to ADC maps, namely Correlated Diffusion Imaging (CDI) is suggested in [81] and implemented
in [34]. CDI does not rely on signal attenuation. Instead of interpolating between known values for b, CDI is cal-
culated by computing the correlation between several signals acquired by the application of pulse sequences
with different characteristics (which would result to different b-values according to eq. 2.6) and the calculate
the correlation between them. If x indicates a spatial location and Sqa ,Sqb , . . . ,Sqn are the acquired signals for
the site indicated by x and f is the conditional joint probability density function, CDI signal is calculated for x
by:

CDI =
∫
· · ·

∫
Sqa Sqb . . .Sqn f (Sqa Sqb . . .Sqn |V (x))xdSqa dSqb . . .dSqn (2.7)

Authors that extract any kind of radiomic features for T2W images, usually extract the same features for DWI
extracted information. DWI radiomic features might be drawn ADC maps or, most rarely CDI. Also features
based on intensity values of DWI images are sometimes examined. In [82, 83], results of possible combina-
tions between features’ extraction from ADC, high-b value DWI and T2W images show that the most potent
combination is fusion of features calculated on ADC maps and T2W.
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Figure 2.3: Axial ADC map of the prostate of patient 01.0058 of the PCMM dataset

T2W AND T1W

T2W is the most commonly used modality in the assessment of the prostate, being present in almost any of the
examined publications. Depending on scanner field strangth and protocols, T2W images can usually achieve
sub milimeter accuracies, while other modalities can only achieve accuracies in the order of several milimeters
(see tab. 2.1 [84]). Therefore, it is usually used also as the basic anatomic image on which maps from other
modalities are registered. T2W Imaging relies on estimating the transverse relaxation times of the specimen
under examination (T2 times). Alternatively, T1W Imaging works by estimating the longitudinal relaxation
times. Usually, T1 times are way longer than T2 times. In mpMRI CaP detection, T1 times are most often
measured at DCE-MRI [71, 85], while it is used directly as a quantitative map in [37].

Table 2.1: typically reported mpMRI modalities resolutions

Modality Voxel Size (mm) Slice Thickness (mm)
T2W 0.72-0.96 2.5
DCE 1.16 3
DWI 2.26-2.89 5
MRS 8-9 15



2.4. T2W AND T1W 11

Figure 2.4: Axial T2 image of the prostate of patient 01.0058 of the PCMM dataset





3
COMMON RADIOMIC FEATURES

Computed radiomic features are mostly features trying to describe texture. According to [86], they can be
distinguished in the following categories:

• Histogram Based Features (statistical)

• Gradient Features

• Run-Length Matrix

• Co-occurence Matrix

• Auto-regressive model

• Wavelets

In this study, next to these features, also the following ones are examined:

• Fractal Dimension

• Morphological Features

Moreover, in [87], some spatial filters presented in [88] are implemented as features. These features are not
going to be specially examined in the following section. Nevertheless, they have been implemented in our
routine.

HISTOGRAM BASED FEATURES

FIRST ORDER STATISTICS

If a region consists of N pixels and I of them have an intensity level i, then we can define the probability distri-
bution P (I ) as follows:

P (I ) = I

N
(3.1)

According to this distribution we can define first- and second-order statistics. Under the term first order statis-
tics, the k th order moments are meant. A k th order moment is defined as:

µk = E
[

(I −E(I ))k
]
=

Ng −1∑
1

(I −m1)k P (I ) (3.2)

Where µ1 =∑Ng −1
I=0 I 1P (I )

The following first order statistics are thus defined [89]:

13
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Table 3.1: First order statistical features

k moment name
1 mean
2 variance
3 skewness
4 kurtosis

Furthermore, in several cases [28, 90], only a thresholded low-or high- percentage of the values of an image is
kept, as it is associated with functional features. Usually this is the case for ADC maps, where, a spot with lower
diffusivity could potentially comprise a hotspot [75]. It is common for first order statistics to be calculated over
a moving window in the range of 3 to 9 pixels or voxels, as for example in [36], a 3x3 pixel neighborhood is
considered, while in [41], first order statistics from three different window sizes are used, namely 3x3, 5x5 and
7x7. At this point we should also mention some special features introduced in [13]. For a 3D ROI of size 3x3x3
or 5x5x5:

f1(u) = MEDut∈Nk (u)[ f (ut)] (3.3)

f2(u) =
√

1

Nk (u)

∑
ut∈Nk (u)

[ f (ut)− f ((u))]2 (3.4)

f3(u) =
∣∣∣∣∣ f (u)− 1

Nk (u)

∑
ut∈Nk (u)

[ f (ut)]

∣∣∣∣∣ (3.5)

Where in the above, MED is the median operator and the followng 2 measures are standard and average de-
viation. u ∈ C is a voxel within the ROi, where C is a scene. u is the central pixel of the ROI, around which
first order statistcs are calculated and Nk the set of pixels that surrounds it. Moreover, in [34] , the following
statistical measures are introduced

M = 1

N

N−1∑
x,y=0

pi x(i , j ) (3.6)

En = −
k∑

l=1
p(l )log2[p(l )] (3.7)

U =
k∑

l=1
[p(l )2] (3.8)

Where in the above equations, p(l ) is the histogram value at gray level l and pi x(i , j ) is the pixel intensity value
at a position (i , j ) inside the ROI.

Finally, an interesting approach for the variance estimation is presented in [82], where the local variance
around a central pixel gc is estimated by the values of P neighboring pixels lying on a radius R (according
to a local binary patterns’ arrangement, see 3.2)

V ARP,R = 1

P

p−1∑
p=0

(gp −µ)2

whereµ = 1

P

p−1∑
p=0

gp

SECOND ORDER STATISTICS

Haralick features are statistics that are directly associated to the texure of an image. They are computed form
the Grey Level Co-occurence Matrix (GLCM). GLCM occurs as follows: If all the grey levels contained in an
image are M, it is an MxM matrix. The element in the position (i,j) contains the total number of pixels with a
grey intensity i that are direct neighbors with a pixel of grey intensity j [39].

Thereafter, 28 statistical features presented in [91] can be calculated. Four statisctial features can also be calcu-
lated for Run-Length Matrices (GLRLM) described in [92]. A GLRLM is a texture measure somewhat simillar to
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Figure 3.1: How the Grey Level Co-occurence Matrix at direction 0 is extracted

a GLCM. For an image of size NxN containing M grey levels, a GLRLM is an MxN matrix, where each row repre-
sents a grey level and each column represents the population of uninterrupted chains of pixels of that specific
intensity contained within the image. There are 4 possible GLRLMs, meant for chains directed towards 0°, 45°,
90°and 135°, as in case of GLCMs.

GRADIENTS

Image gradients are the grey value gradients to a selected direction, therefore they can be applied also as di-
rection selective features. Definition of a gradient for an image f is as follows:

∇ f =
[
∂ f
∂x
∂ f
∂y

]
(3.9)

Where the most basic filters applied to estimate x and y are respectively:

Gx = [−1 0 1
]

or
[
1 0 −1

]
Gy =

−1
0
1

or

 1
0
−1


For diagonally oriented gradients, one can use the Roberts cross-gradient operators:

Gdi ag 1 =
[−1 0

0 1

]
or

[
1 0
0 −1

]
Gdi ag 2 =

[
0 −1
1 0

]
or

[
0 1
−1 0

]

While for x and y oriented gradients, there are also the Sobel filters presented below. Sobel filters somewhat
smooth the gradient by assigning a weight of 2 to the center point:

Gx =
−1 0 1
−2 0 2
−1 0 1

or

1 0 −1
2 0 −2
1 0 −1


Gy =

−1 −2 −1
0 0 0
1 2 1

or

 1 2 1
0 0 0
−1 −2 −1


As we can see in the above equations, alternatives within the same gradient type refer to different direction or
orientation selection. For example, in eq. 3.10, the first matrix is highly selective to vertical edges, while the
second one to horizontal.
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Another popular option is the Kirsch filters. Kirsch filters are used for blob detection, where as blob is consid-
ered any contiguous region surrounded by a border of similar brightness. It is a gradient based filter, where
the kernel described in eq. 3.10 is rotated and applied in 8 directions. Subsequently, the maximum value of all
these convolutions is kept as the track of the contour [93].

gi =
 5 5 5
−3 0 −3
−3 −3 −3

 (3.10)

Application of Gaussian filters is also mentioned as another option. Gaussian filters consist in the convolution
with Gaussian kernels of variable standard deviation σ, if x and y refer to the central pixel around which the
filter is applied:

G(x, y) = 1

2πσ2 e−
x2+y2

2σ2 (3.11)

In [75], Gaussian filter banks of σ ranging exponentially between 2 and 8 mm are used. The choice of the
specific kernel sizes is justified as being most sensitive to malignant areas, as the lesion size is said to have
been observed empirically to vary within a specified range of typically 2 to 20 mm. Another filter that is used in
the same reference is the filter reported in [88]. This filter is sensitive in blob detection. Originally developed as
a method to extract information for lung cancer from CT images, it also could be useful in case of MRI prostate
cancer images. This filter, has been developped as to achieve high sensitivity to lines and dots that would
represent pulmonary vessels and nodules. If λ1 and λ2 are the two eigenvalues of the diagonalized Hessian
matrix applied on the entire image, the filter can be expressed as

zdot =
{ |λ2|2

|λ1| ifλ1 < 0,λ2 < 0

0,otherwise
(3.12)

Zl i ne =
{
|λ1|− |λ2|ifλ1 < 0

0,otherwise
(3.13)

A filter that is really popular in texture classification is Local Binary Patterns, presented in [94]. Local binary
patterns around any point within an image is roughly obtained as described below. Values on a selected radius
of R pixels around a point of interest are obtained by interpolation. Then, a set of points P is selected on the
specified radius. This filter is denoted by LBPP,R and its value is calculated as follows:

LBPP,R =
p−1∑
p=0

s(gp − gc )2p (3.14)

In the above equation, gc stands for the value of the central pixel, gp is the gray value of the selected pixel p on
a raius R and s is the step function defined as:

s(t ) =
{

1, t ≥ 0

0, t < 0

According to the above equation, each unique combination would yield a unique code that would identify the
local binary pattern. A rotation invariant version of this procedure, yields a unique set of possible combina-
tions, or local binary patterns. A great property of LBP filters is that they are gray scale invariant, as they solely
rely on the differences of gray values between neighboring pixels.

Figure 3.2: How Local Binary Patterns’ histogramms are extracted
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In [82], local binary patterns are calculated as a feature. Moreover, a second order modified version is pre-
sented, namely Local Directed Derivative Patterns (LDDP).

LDDP 2
P,R =

p−1∑
p=0

s(d 2
p,R )2p (3.15)

whered 2
p,R = g R2

p + gc − g R1
p (3.16)

R1 and R2 are two successive radii.

While Gabor filters can be regarded as a wavelet family (see 3.3), they will be treated in this section as plain
filters. Gabor filters are 2D sinusoidals contained in a Gaussian envelope. They are usually applied in a 2-D
Fourrier space. Gabor filters are also related to Gabor wavelets, since they can be applied in several directions
and scales (see section 3.3). Therefore, they imply the generation of many possible features, to many scales
and directions [95].

While more sophisticated filter designs, as the one presented in [88], Gaussian filters or Gabor filters deal with
the issue of noise, the major drawback of plain gradients is that they can turn out to be very prone to noise.

MULTI-SCALE FEATURES

Wavelets are used to conduct multi scale analysis. Multi scale analysis is used in image compression, or to
easily detect structures suspected to be within a specific scale. A popular multi-scale analysis tool is image
pyramids, where on the basis of the pyramid there is the full resolution image and at each level up, resolution
reduces by two. Each level of the pyramid is extracted by low pass filtering and downsampling the previous
level by a factor of 2. Thus, an image of NxN pixels is reduced at each step to an image of N

2 x N
2 , where the

previous level preserves the level of details that are lost in the previous one, so that a perfect reconstruction is in
the end possible. Pyramid decomposition is used in [41], where features are extracted for each resolution scale.
Low pass filtering is necessary to avoid aliasing in the next detail level. The most popular kind of pyramids is
Laplacian pyramids, where the filter is implemented by Gaussian bluring at each scale [96], [97].

Another approach is that of subband coding, where the input signal is analyzed into discrete frequency sub-
bands that are subsequently downsampled without loss of information.

Wavelet decomposition is applied when it comes to multiresolution or multi-scale analysis. While the Four-
rier transform of an image signal provides information about multiple scales, its downside is that it cannot be
correlated to where the details at each scale are within an image. With wavelet decomposition, it is possible
to localize the presence of scales and orientations within an image. While image pyramids are useful to ex-
tract information about different scales, the wavelet transform, a mathematical tool which can be viewd as an
expansion of the Fourrier Transform, can also provide informations about scales and orientations, localized
within an image. Wavelet decomposition has the following form:

W (f)(a,b) = |a|− 1
2

∫ + inf

− inf
f (t )ψ

(
t −b

a

)
d t (3.17)

Where a,b are scaling and translation parameters and ψ is called the mother wavelet and it has to fulfil some
criteria [98, 99]. Translations and scalings of the mother functions result into an orthogonal basis. Reconstruc-
tion can be achieved by summing up the basis functions multiplied by the corresponding coefficients, that
indicate the content of power at each scale spanned by a basis function:

f = ∑
α j ,kψ j ,k (t ) (3.18)

α j ,k = < f (t ),ψ j ,k (t ) > (3.19)

Where indices j ,k are integer parameters that act on parameters a,b of eq. 3.17 and result in different basis
functions. The application of these parameters to each scale, yields four images, namely the respective j level
image itself, an image where the downscale has been applied to rows, one image where the downscale has
been applied to columns and one image for both. The coefficients of each image at each scale are used as
features for texture description.
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There are several popular options as mother wavelet functions. One of the most common options is the Haar
wavelets, where the Haar functions are an orthonormal basis 3.20. The Haar transform of an image F can be
calculated as F′ = HFH and H is the matrix containing the Haar basis functions cases, that are calculated as
follows: For an image NxN,

z ∈ [0,1]

k = 0,1,2, ..., N −1

p ∈ [0,n −1)

q = {0,1}

hpq (z) = 1p
N


2p/2 (q −1)/2p ≤ z < (q −0.5)/2p

−2p/2 (q −0.5)/2p ≤ z < q/2p

0 otherwise

(3.20)

Besides Haar wavelet basis functions, there are also other wavelet basis functions, like Gabor wavelets applied
in [13, 35, 41] or Daubechies waveletes [100]. Coefficients of Daubechies wavelets averaged over a 7x7x7 voxel
window are used as texture descriptors in [30].

FRACTAL FEATURES

In [101], [32] and [30] authors use fractal features to discriminate between textures. Fractal dimension is a
measure describing the heterogeneity of an object. It was first described as follows. Consider a coastline

surrounded by a strip of width 2ε. The suggested length of the coastline is l (ε) = striparea
2ε . As epsilon decreases,

l (ε) increases. It was shown in [102], that for l (ε) holds

l (ε) = Fε1−D (3.21)

Where in the above, F and D are constants, D being the fractal dimension (FD). It is straightforward, that the
fractal dimension is directly associated with the irregularities within an image. The problem for image texture
analysis comes to estimate D accurately.

In [32], histogram fractal dimension (and not of the image itself) is extracted by the popular method of differ-
ential box counting, originally described in [103]. According to this method, the entire support field (an array
MxM) is segmented into progressively thinner sections (of size exe), for which the FD is estimated according
to the following equation:

Ne =
∑

cei l

[
Mde

Ge

]
(3.22)

Where de is the difference between the greatest and smallest value within each subregion of size exe and G is
the global maximum value for the entire MxM array.

In [101] the blanket method originally reported in [104] is applied to extract the FD from the image texture.

As a remark, it is noteworthy that in [32], application of fractal features from only T2W images manage to
achieve very high classification accuracy at a one-dimensional feature space. This might show a great potential
in fractal features or raise further questions about the reproducability of the report results.

In [30], a novel method for fractal dimension approximation is introduced. According to the authors, 3D im-
ages can be modeled as a multifractional Brownian motion process, in which F D = 4−H , where H is the Hurst
parameter.For the Hurst parameter, for the correlation of two points lying at points t and s respectively, if the
fBm values are X (t ) and X (s) respectively, it holds for their correlation:

E[X (t )X (s)] ≈ 1

2
||t 2H(t ) + s2H(t ) −||t − s||2H(t )|| (3.23)

It is concluded that the fractal dimension of such an image can be approximated by approximating the Hurst
parameter by the following equation

l og2(
V j (BH (t ))

V2 j (BH (t ))
≈ (2H(t )+3) j (3.24)
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Where indices j and 2 j stand for two successive scales and if w j ,k is the Discrete Wavelet Transform coefficient
at a scale j translated by a vector k

V j (B(H(t )) = 1

n j

∑
k

w2
j ,k (B(H(t )) (3.25)

Finally, we should mention the Discrete Cosine Transform (DCT) applied in [31] in local windows of 7x7x7 vox-
els. Although not a multi-scale feature itself, its mathematical representation resembles the decomposition of
a signal to an orthogonal basis and therefore it is presented in this section. DCT implements the decomposi-
tion of a digital signal sequence X (m) in translated cosine components, pretty similarly to DFT. As it is defined
in [? ], DCT coefficients are calculated for a 1-D signal as

Gx (0) =
p

2

M

M−1∑
m=0

X (m) (3.26)

Gx (k) = 2

M

M−1∑
m=0

X (m)cos
(2m +1)kπ

2M
,k = 1,2, . . . , (M −1) (3.27)

MORPHOLOGICAL FEATURES

In [18] and [75], it is suggested that also tumor shape characterisitcs should be quantified and used as features.
In [18], three such features are used:

• Difference between morhpologicaly closed and open are of the lesion:

f 1
M = Aclosed − Aopen

Ai ni t i al

• Difference between perimeter length before and after eliminating high frequency components:

f 2
M = |Pi ni t i al −Pr econstr ucti on |

Pi ni t i al

• Difference in area after low pass Fourrier reconstruction of the lesion shape:

f 3
M = |Ai ni t i al ⊕ Ar econstr ucted |

|Ai ni t i al ∪ Ar econstr ucted |

• Asymmetry estimation by splitting the lesion with an axis along the center of mass and calculating the
difference between the residual areas:

f A = Al ar g e − Asmal l

Ai ni t i al

Morhphological features used in [75] include tumor sphericity, volume and compactness. Asymmetry is also
taken into account. While it is reported in [75] that application of such can prevented false positives that
occurred during segmentation errors (as automatic segmentation is applied in their approach), it can be clearly
seen that these features are rather prone to segmentation, even if it is manual (interobserver variability) [16].
In our approach, morphological features will not be taken into account.





4
DATA PROCESSING

DATA SPACES

It should be noted that the features mentioned in the previous chapter often reside within different spaces.
A case that commonly occurs is that the features refer to a pixel or voxel. This happens for example in case
of the first order statistics. First order statistics extracted from a window around a central pixel are calculated
for each pixel, therefore, if e.g. 4 first order moments are calculated according to this procedure, each pixel or
voxel has four features that refer to it. On the other hand, features can also refer to a selected or suspicious
ROI. In case of the fractal dimension, for example, FD is calculated for the image gray values within the ROI
or for the histogram of the image within the ROI. Therefore, it might not be possible to arbitrarily apply any
feature family combination to train a plain classifier. Some techniques that could make this however possible
are suggested in ??. Below are mentioned shortly all spaces within each of the feature sets presented above
reside.

1. First Order Statistics
First order statistics are calculated per image element (voxel/pixel). Thus, each element is ascribed with
k values and comparisons take place between pixels.

2. Second order statistics
Second order statistics are calculated per ROI. Depending on the implementation, usually 28 GLCM (or
GLRLM) features refer to a ROI.

3. gradient features
All features mentioned in the gradients section (3.2) yield a different per voxel or pixel values. Thus, for
example, if both directions Roberts’ filters are applied on the image, the result will be two more images,
hence each pixel will be ascribed with two more values.

4. Multi-scale features
Wavelet features’ data spaces are very interesting, as they can be divided in the subcategories. First,
pyramidal decomposition is used and any kind of feature that is extracted from the original scale image
can be extracted on all levels of the pyramid. This is not really a space itself, but in this case merely
new data spaces are generated by this procedure. For example, an image of original size 512x512 pixels
broken down in two levels, will yield a new image of 256x256. Features extracted for a ROI of original
size, e.g. 24x24 will be also extracted for the low-resolution ROI of size 12x12. Thus, a new data space
has occurred. DWT coefficients, on the other hand, yield a variable size 3-D vector at each deeper scale
decomposition. This variable size can’t be considered really as a per pixel feature space, therefore, it will
be viewed as a per ROI feature set.

5. Fractal features
Fractal features yield a per ROI result, as they depend on the texture of a region.

6. Morphological features
Morphological features do not really comprise a set that is in either of these categories (per picture ele-
ment or per ROI), as information is inferred just by the ROI shape. Functionally, however, in an imple-
mentation of a CAD system it could be considered as a per ROI feature.
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A possible suggestion to integrate between per pixel and per ROI decision objectives, would be to estimate a
ROI metric from decisions made for voxels or pixels and then subsequently apply this as a per ROI feature (e.g.
first order statistics of a filter over a ROI). Another possible solution would be to assign ROI values to each pixel
within a ROI. Thus, ROI features can be faced as per-pixel (or voxel) features. Finally, ROIs could be sliding
windows, giving a unique value to each pixel. In our implementation, the last two suggestions are present.

DIMENSIONALITY REDUCTION

Extraction of features usually leads to face the problem in a space that is way too high for the size of the datasets
that are usually available. Dimensionality can be sometimes even in the order of 635 features [6], while the
largest reported dataset in the examined literature is reported in [82], where a training set of 244 patients with
an independent test set of 136 patients have been used. The use of datasets whose size fluctuates between 100
and 200 patients is not uncommon [37, 87], but in most of the cases, size of the datasets is usually in the order
of 20 patients [29, 35]. In some cases, it is around or it could even consist of 5 patients [13].

Even if the dimensionality of 635 features is an extreme case, usually features that refer to texture form a space
whose dimensionality is usually well above 100. Even for a dataset of 200 patients, this is way too big, due
to the notorious “curse of dimensionality” [105]. According to this principle, as the dimension of a space
increases, this space becomes more and more sparsely populated by the available samples. Therefore, in order
to properly train a classifier in high dimensional space, more data samples are necessary. The relationship of
the density of data points within a space depends exponentially to the number of dimensions. Therefore, the
corresponding necessary increase in data points is exponentially dependent on the number of dimensions.

When talking about texture features, it is highly likely that features are not completely uncorrelated one with
another. For example, features that result from the application of directional filters, might have a high degree
of correlation between them. This results in information redundancy and it should be eliminated, in order to
obtain the optimal number of dimensions. Several methods have been proposed in order to achieve this. They
can mostly be separated in feature extraction and feature selection techniques. Below are briefly described
some of the most important methods used in literature.

FEATURE EXTRACTION

Feature extraction is about transforming the available features into new features that should be more descrip-
tive than the original ones. In [36], authors use the Discrete Cosine Transform (DCT) to their original 30 D
feature space and only consider the lowest 3 components. DCT is a continuous wavelet transform, so its prin-
ciples are those described in sec. 3.3. This means that the 3 lowest components are used to describe the coarser
characteristics, this coarseness though referring to the features and not the original image itself.

In [74] authors use a very popular technique, namely Principal Components Analysis (PCA). PCA works by
trying to project the data from the original space to a lower dimensional manifold within the space and keep
the transformed features. Its successful application requires data to be indeed sufficiently projectable into
such a manifold without great loss of information [106].

Somewhat similar to PCA, in [107] authors introduce an embedding space related technique. An embedding
space is a lower dimensional projection space of the original data points, where however a certain dissimilar-
ity measure criterion has to be fulfilled, so that “distances” between data points retain their original mutual
relationships as in the original high dimensional space. There are several popular embedding techniques that
can be also used to visualize data relationships [108]. In [107] however it is recommended that classification
is carried out in the embedding space. Dimensionality reduction is being achieved by projecting the original
data to directions of the eigenvectors of the matrix formed by their mutual distances, where the metric used as
distance has an exponential form and is for points c and d , a feature vector f and ωt the tumor class:

W (c,d) = e−||P̂ (c→ωt |f−P̂ (d→ωt |f)|| (4.1)

FEATURE SELECTION

Feature selection, unlike feature extraction, is a technique where original features, considered to be highly
informative are preserved. In [109], authors evaluate the features according to their ability to discriminate
between cancerous-non cancerous regions. The metric to judge is the AUC. Subsequently, the calculate a
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correlation matrix for all features. If two of them are highly (more than 0.8) correlated, they only keep the
feature with better AUC performance.

In [42, 82], authors implement the mininal-redundancy-maximal-relevance (mRMR) criterion introduced in
[110]. According to that crieterion, if the mutual information for two probabilistic variables x, y is defined by

I (x; y) =
∫ ∫

p(x, y)log
p(x, y)

p(x)p(y)
d xd y (4.2)

mRMR criterion works by trying to maximize Φ = D −R metric, where D is relevance and R redundancy and
they are defined as follows:

maxD(S,c),D = 1

S

∑
xi∈S

I (xi ;c) (4.3)

mi nR(S,c),R = 1

|S|2
∑

xi ,x j ∈S
I (xi ; x j ) (4.4)

Where in the above equations, S is the feature set comprising of features {x1, x2, . . . , xn} and c is the target class.
In [17], after trying several feature selection techniques, the authors conclude that the most effective one is
a feature selection scheme embedded on the classifier (recursive feature selection support vector machine,
RFE-SVM). SVM classifier is trained for many possible feature sets. If the margin between two classifiers is
small in the absence of a feature compared to the margins in the absence of other features, this one feature is
excluded.

CLASSIFIERS

As seen in table 5.1, the most commonly used classifiers are Support Vector Machines (SVMs) and Random
Forests (RFs). As both of these classifiers are used in our experiments, a brief explanation of their principles
is presented below. Other options include Neural Networks and AdaBoost. Neural networks, although a great
option under other circumstances, strongly rely on a large size of a dataset with many independent samples.
Our datasets’ sizes do not allow for the use of such a method. Finally, AdaBoost is also a promising option.
Basically being an ensemble classifier, as this method is covered adequately by Random Forests, this method
will also not be applied.

SVM

SVMs are really popular classifiers that have been developped by V. Vapnik and A. Chervonenkys [111]. Given
a linearly separable labeled dataset, there can be several linear classifiers described by

y(x) = wTφ(x)+b (4.5)

where y is the assigned label, (w) is a weight vector, b is a bias vector and φ(x) is a transformation function of
the original data space. SVM guarantees to find the solution that maximizes the margin of the classifier. The
margin is defined as the minimum distance of a point of the available dataset from the decision hyperplane.
Deriving from eq. 4.5, if true labels are defined as tn for a data point n this can be found by maximizing ([105],
eq. 7.3):

ar g maxw,b

{
1

||w||mi nn[tn(wTφ(x)+b)])

}
(4.6)

By scaling optimal w,b by a factor κ so as to set tn(wTφ(x)+b)]) = 1, then for all data points holds:

tn(wTφ(x)+b)]) ≥ 1 (4.7)

Where the inequality holds, points are said to be inactive, whereas points for which the equality holds are active
and the are the marginal points, or support vectors. An intuitive notion of this is presented in figure ??. The
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optimization continues just by considering the support vectors that are the most prone points in the dataset
and can still define the most robust decision hyperplane. As a result, in the end, very few points are actually
needed to draw a robust decision limit.

Figure 4.1: A demo of support vectors and margin in a 2D-2 class linearly separable problem

The two major assumption of linear separability can be bypassed by the transformation function φ(x), the full
form of which is not necessary, as during optimization, it is not needed as it is. Instead, the kernel function is
needed, which does not describe the full transform, instead it sets a rule of transforming the distance metric:

k(x,x′ =φ(x)Tφ(x′) (4.8)

Application of a kernel can transfer an originally non-linear problem to a linearly separable equivalent. Over-
lapping classes issue can also be adressed by allowing for an error during optimization.

Unfortunatelly, an analytic rule of transfering the problem to a linear domain is rarely known, therefore esti-
mations or approximations have to be done. There are several popular kernel functions. Radial Basis Function
(RBF) kernel is one of those. RBF kernel is defined as:

K(x,x′) = e−
||x−x′ ||2

2∗σ2 (4.9)

From the above description and the commonly available dataset sizes, it becomes clear that SVM is a good
choice for this problem, as high-dimensional spaces with small datasets are a common case.

Nonetheless, we have to consider that SVM is very prone to support vectors whose dimmensions do not in the
same scale. Moreover, online learning for SVM is not an option. Beacause of these last drawbacks, although
SVM is tested in our experiments, the best option seems to be random forests, described below.

RANDOM FORESTS

Random forests were introduced by L. Breiman in [112]. Random forests is an ensemble learning technique
based on tree classifiers.

A decision tree is a classifier that splits an N-dimensional classification problem in the combination of N-
one dimensional problems. Training consists on assigning a threshold on each feature and making a decision
based on if that feature is above or below that threshold. Bootstrap aggregating consists in training a set of
classifiers on different subsets of the dataset and choosing according to a voting scheme each time. There are
several voting schemes, such as majority voting (“democracy”, or the class with the most voters is assigned) or
just the most confident classifier could be taken into account.

Random forests train a set of decision trees as classifiers (the forest). The novelty lies within the fact that
bootstrapping this time does not consist in subsampling the dataset, but the features’ space. By training on
a random subset of features with replacement each time, again there is an ensemble selection of classifiers,
whose result is combined.

Things that have motivated for the application of random forests include the fact that they do not overfit
([112]). Moreover, a decision tree is a classifier that does not need any data preprocessing and is completely
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independent of scale between features (as each feature is treated independently). Finally, this method allows
for an online learning model.





5
LITERATURE REVIEW

All articles that have been retrieved can be distinguished in two major categories of publications, namely pub-
lications concerning:

1. Evaluation of specific biomarkers relevance and effectiveness

2. Attempts to build a Computer Aided Diagnosis System (CAD)

Some basic pilars of each of these approaches are presented in the summary tables 5.2 and 5.1, concerning
categories 1 and 2 respectively. There were also some publications trying to assess a combined radiologist-
CAD decision support system [44, 113], that do not fall in any of those categories, however, they could be very
useful in clinical practice. Moreover, some publications whose results are presented vaguely are omitted. In
order to avoid clutter, the following groupings of properties are introduced:

• Preprocessing

– NF (Noise Filtering)

– IBC (Inhomogeneity/Bias Correction)

– INT (Intensity Normalization)

• Features
Although we are only interested in radiomic features, it is necessary to take into account the entire fea-
ture set used at each study. Papers that only include functional pharmacokinetic or MRS features are not
reported. The following groups are introduced:

– C0 (Quantitative Map Intensity Features)

– C1 (First Order Statistics)

– C2 (Second Order Statistics including (GLCM, GLRLM, Haralick features))

– C3 (Gradient Features, Including Sobel and Kirsch filters and RI-LPQ ([114]))

– C4 (Wavelet-MultiScale Features)

– C5 (Fractal Features)

– C6 (Morphological Features)

• Evaluation Report
When reporting results, usually atuhors report sensitivity, specificity and accuracy. Area Under the Curve
(AUC) is another option that has the same meaning as accuracy. When AUC or accuracy measures are
available, results are reported in terms of accuracy. In any other case, the metric is specified explicitly.

In favour of keeping these tables readable, some possibly useful informations are not included. Concerning
the datasets, in some publications there is an independent evaluation dataset -although from within the same
clinic-([82, 87]) while in most papers cross validation is performed [34, 74]. An important aspect to that is the
number of folds for the cross validation. Also, some publications include in their datasets only scenes from
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patients with confirmed histopathology [32, 115], while others also take into account images from healthy
prostates [39]. Another potentially important aspect is what the ground truth is for each of the approaches.
Most often, this is manually registered images from histopathological slices [25, 116], while also in other cases
MRI-TRUS guided biopsies [117] or even manual MRI delineations are considered as ground truth [118]. Re-
garding the reported results, only the best one is always presented. However, there can be cases that results
within a study strongly diverge, as the best results usually only apply for high GS values ([37]) or only apply
to Central Gland (CG) or Peripheral Zone (PZ) Cap [119], while in some cases there are also reported different
accuracies for various decision objectives that the CAD tries to resolve [75]. Finally, frequently several com-
binations of features’ families or mpMRI modalities are examined, however, only the ones yielding the best
results are presented. Notation “-” means that there is no implementation of this technique in this publication
and “NA” means that it is not applicable. Column GS refers to the considered Gleason Score differentiation
between tumorous and healthy, wherever this measure is reported. The remarkable issue presented below, is
that all of these studies are only evaluated on data from a single clinic. This means that, even if a completely
independent dataset was used, the images were acquired under the same scanners and protocols.
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30 5. LITERATURE REVIEW

When referring to feature sets’ and biomarkers’ evaluation, results are usually not reported in terms of accuracy
as they can be totally different and usually there is a different study objective. Therefore, columns referring
to reported accuracies cannot be present in the same manner as in table 5.1. In short, included references’
objectives are described below.

In [35], authors conclude that there are significant quantitative differences in biomarkers between CG and PZ
CaP. In [123] data consists of a dataset acquired by two different scanners, which is an interesting and seldom
case. It is concluded that Haralick features on T2W and median on ADC maps have a significant correlation
with biochemical recurrence after PZ radiotherapy, while Haralick features calculated on ADC maps yield no
important correlation. In [39], the purpose is to find out what features are efficient in GS differentiation. Har-
alick entropy and inertia are positively and energy, correlation and homogeneity negative correlated to GS.
In [117], the features that are deemed more efficient for d’Amicco clinical risk score evaluation are first order
statistics on ADC maps. Authors in [124] come up to the conclusion that, within a broader set of examined
features, gradient features are the most efficient in evaluation of Laser Inerstitial Thermal Therapy (LITT) out-
come. In [125] it is estimated that ADC values contain useful information about GS score classification. In
[57] it is concluded that the use of relative signal intensity (rSI) of very high-b DWI can be more informa-
tive than ADC maps and can lead to great results in conjunction with T2W images. Finally, the purpose of
[18, 90, 119, 126] is to introduce a novel feature ensemble for automatic delineation between cancerous and
healthy regions.

Table 5.2: Feature Sets Evaluation Studies

Citation Scanner Data Preprocessing T2W DCE DWI
[35] 3 T 22 IBC, INT C1, C2, C4, C5 - -
[123] 3 T 74 INT C1, C2, C3 - C1, C2, C3 3

[39] 3 T 174 - C2 - C2 3

[124] 1.5 T 5 INT C2, C3 - C2, C3 3

[117] 3 T 48 - C0, C1 - -
[126] 3 T 5 NF C1, C2, C7 - C1, C2, C7 3

[18] 3 T 13 - C0, C1, C2, C6 C0, C1, C2, C6 C0, C1, C2, C6 234

[57] 1.5 T 17 - C0 - C0
[119] 3 T 23 INT, IBC C0, C1, C2, C3, C5 C0 C0, C1, C2, C3, C5 3

[90] 3 T 48 - C0, C1 C0 C0, C1 3

[125] 1.5 T 57 - C0
[34] 3 T NA 1 - C1, C2 - C1, C2 23

1 dataset size is given in ROIs and not number of patients. Size of the dataset consists of 5260 pixel win-
dows for T2W and 1315 for DWI.

2 features extracted from CDI maps
3 features extracted from ADC maps
4 features extracted from single b-value DWI
2 computed on both CDI and ADC maps extracted from CHB-DWI

In table 5.1, one can realize that all currently available studies restrain to data obtained from a single clinic,
namely under one protocol and scanner. Moreover, a completely independent dataset is seldom used.
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DATA

Our datasets are the TCIA ([127, 128]) and the PCMM datasets.

TCIA DATASET

“TCIA Prostate fused-MRI-Pathology” dataset is a dataset from the Cancer Imaging Archive (TCIA), an open
collection of cancer images datasets. The specific dataset ([128]) includes multi-parametric MRI (mpMRI) for
CaP patients. 28 patients are included, however labels are provided for only 15 of them. Labels refer to Glea-
son Score 6 and above (positive) or below (negative). Prostates about which labels are available have been ex-
tracted and sliced alongside an axis alongside the urethra every 3-4 mm. Each of these slices was further sliced
in quadrants and after fixation in formalin has been stained with hematoxylin and eosin. Annotations based
on staining have been made by an expert pathologist. Subsequently, after resected prostate slices’ reconstruc-
tion by a software package, correspondence between the extracted prostates and the T2 MRI images have been
made by an expert pathologist and an expert radiologist based on major anatomic landmarks (such as the ure-
thra). These landmarks have been fed to a thin-plate spline registration algorithm to complete the registration
between T2-MRI images (fixed image) and pathology images (moving image). The computed transformation
is then applied to register the labels. Detailed information about this process as also any further information
about this dataset can be found in [129]. The provided labels for this dataset concern Gleason Scores of 6 and
above.

The images of TCIA are usually of consistently high quality (0.4-0.5 mm resolution). Endorectal coils have
been used and the contrast is relatively high. An example of two randomly picked TCIA axial T2 image slices is
shown in fig. 6.1a, 6.1b.

PCMM DATASET

The PCMM dataset contains mpMRI scans from 3 hospitals. These are the Erasmus MC, NKI and RadboudUMC.
Moreover, macroslides of the extirpated prostates and the histology of each macroslide are available for some
of the Erasmus MC cases. The PCMM dataset is developed by a multidisciplinary consortium composed of
academic hospitals to address clinical needs in the field of prostate cancer. PCMM dataset primarily consists
of 183 folders. Nonetheless, this is not the actual number of patients, as several duplicate patients with differ-
ent patient IDs are observed. Moreover, due to incomplete information for many of these cases, most of the
patients had to be excluded. The most common reason for this is the absence of a histology report. Further
reasons include absence of metadata such as sequence and spacing description of the images.

In detail, by the time of data processing, 23 pathology reports were available. As the constructed software relies
on patient identification based on the patient ID dicom tag, a missmatch in dicom tags could result in a patient
being excluded. Patient ID was chosen as a safe key to avoid duplicate entries. However, it is recommended
that in future versions this is switched to DOI(Digital Object Identifier). Pathology reports are identified using
the patient name. In most cases, the patient name dicom tag is the same or there is a clear connection between
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(a) slice of patient TCIA.aaa0044 axial T2 (b) slice of patient TCIA.aaa0064 axial T2

those two. However, for 8 out of the 23 patients a match between dicom tags and patient names was not
achieved and the images could not be retrieved. Therefore, another 8 patients had to be excluded. This resulted
in a remaining dataset of 15 patients.

In order to correspond these images to labels, the pipeline described bellow was applied. Prostates were
extracted and sliced every 3-4 mm along the urethra axis, resulting in macroslides that were photographed.
Pathological annotations were made on thiner slices, sliced from the top of the macroslides. These slices were
manually reconstructed to resemble the whole single slice. Tumor contours that were originally acquired by
histology reports on the thinner slices were then manually transferred on the macroslide reconstruction. The
contours were drawn on the extracted prostate macro photos. By manually stacking all these slices together
along a vertical axis, it is possible to get a reconstruction of the prostatic volume. Handdrawn ROIs should now
represent the volumes of the lesions. For further details on this method, refer to Appendix B.

The problem that this method sets is, that, after extraction the prostate loses the shape that it had within the
body, making a direct correspondence of the annotated ROIs to the MRI images very difficult. However, if
a 3 dimmensional B-Spline registration is applied on a mask referring to the volume reconstructed from the
macros to the mask of the axial T2 image, the resulting transformation could be applied to the ROIs of the
reconstructed volume. Then they should correspond to the correct regions within the image. For details about
all the preprocessing of the PCMM dataset, the reader can refer to Appendix B.

Most of the images of the PCMM dataset are of good quality. However, note that, unlike TCIA dataset, images
of the PCMM dataset were obtained without an endorectal coil. Moreover, phantoms (see fig. 6.2b) or poorer
resolution in the order of 0.7 mm (see fig. 6.2a) are not uncommon. It is furthermore interesting to notice in
these pictures, how the range of gray value varies, even for images within the same clinic. Beyond anatomic
information, differences in resolution are expected to affect the performance of the model, as the training is
based on pixels.

The accuracy of the process according to which the labels were assigned is questionable, as there is no previous
report of a similar attempt in literature, where usually labelling is being carried out by radiologists directly on
the T2 images. This means that a region which should be marked as a lesion on the T2 image could actually be
a healthy region and vice versa. As a result, poorer results should be expected for this dataset. The provided
labels for this dataset concern Gleason Scores of 7 and above. Note that, in case of the TCIA dataset the Gleason
Score was 6 and above. In case where a model is trained on one dataset and applied on the other, this is
expected to further deter the results.

UTILIZED FEATURES

All features have been calculated for the axial T2 sequences. The features are extracted on a per-pixel level
(and not per voxel). The reason for this option was the fear that the vastly different resolution along the 3rd axis
might deter the model training. Features are only calculated over a region defined by a rectangle circumscribed
over each slice of the prostate for computational efficiency. They can be visualized over the original image,
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(a) slice of patient PCMM.s9 axial T2 (with low resolution)
(b) slice of patient PCMM.s30 axial T2 (presenting a phan-
tom)

whereas the rest of space is filled by black for visualization purposes. Wherever a library is not mentioned, a
custom implementation is implied. A more scientifically detailed explanation of those features can be found
in chapter 3.

FIRST ORDER STATISTICS (C1)

First order statistical features (C1-category -1) that have been implemented include:

• mean (numpy implementation)

• standard deviation (numpy implementation)

• skewness (numpy implementation)

• kurtosis (numpy implementation)

• median (numpy implementation)

• average deviation,described in [13]

• entropy, described in [34]

• uniformity, described in [34]

• variance, described in [82]

All category 1 features are calculated within a sliding window of size 9x9 pixels. This size has been chosen as it
is a typical window size in literature (7 to 9 pixels are the most common sliding window sizes). Depending on
the resolution of the scan, it can correspond to a square of physical dimensions 3 to 5 mm, which is typically
adequate to capture a whole lesion or a big part of it.

SECOND ORDER STATISTICS (C2)

Second order statistics include:

• 10 features for Grey Level Run Length Matrix (GLRLM) features, described in [92]. In order to avoid a
sparse histogram and highlight the importance of contrast, for these features a 5 level gray value image
was considered.

• 26 features for Grey Level Cooccurence Matrix (GLCM) features, described in [91]. For those features,
mahotas ([130]) python library has been used. As implementation of the 14th feature proved to be buggy
and unstable, 14th feature was finally disregarded. In order to avoid a sparse histogram and highlight
the importance of contrast, for these features a 5 level gray value image was considered.



34 6. METHODS

• A histogram of Local Binary Patterns (LBP), described in [94]. Again, mahotas libray has been used for
the estimation of these features. A radius of 1 and 8 points have been considered. Implementation of
radius of 2 for 16 points is also available and can be switched on.

• A histogram of Local Directional Derivative Patterns (LDDP), described in [82]. Radii 1 and 2 for 8 points
have been considered. Implementation of radii of 2 and 4 pixels for 16 points is also available and can
be switched on.

As category 2 features are based on the gray values over an entire region of interest, two approaches have been
examined:

• In this case, ROIs over which to calculate the features were defined by the ground truth. As mahotas
library (or any library available) does not cover the case of support regions of arbitrary shape, the method
to apply this was to consider a circumscribed rectangle around each ROI marked as positive. As a slice
might contain multiple ROIs, the remaining healthy space was then partitioned in a set of rectangles.
The boundaries of those were defined by the boundaries of the rectangles corresponding to positive
ROIs extended until the end of the image and the boundaries of the image itself. This can be formulated
as follows:

If N contours described by a parameter ti (xi , yi ), i ∈ [1, N ] respectively lie within a rectangle bounded by
x ∈ [x0, x1] and y ∈ [y0, y1], then for each xi , yi holds xi ∈ [x0

i , x1
i ] and yi ∈ [y0

i , y1
i ], where x0

i , x1
i ∈ [x0, x1]

and y0
i , y1

i ∈ [y0, y1]. Then the ROIs over which the features are calculated are defined by the intersections
of the lines defined by

x = x0, x0
1 , . . . , x1

y = y0, y0
1 , . . . , y1

An example of this can be seen in fig. 6.3c where different values of a specific feature correspond to
different regions of interest. In this way, the partitioning of the specific prostate slice in regions of interest
can be distinguished.

Thereafter, the values corresponding to each feature were assigned to all the pixels within the ROI, in
order to proceed in a pixel level classification.

Downsides of this method are that, first, it would not support a fully automated CaP detection approach
as suspicious ROIs’ marking by a radiologist would be a prerequisite. Moreover, feature values were
found to have a dependence on the region size (the smaller the region the smaller the value). This would
be expected, as features described above correspond to histogram bin counts. Normalization by the
ROI size (area in pixels) was tried, but as many feature values are small (in the order growth of 10e-2),
arithmetic underflow is very often. Although in average the size of regions corresponding to positive
ROIs and ROIs corresponding to the healthy space partitions are comparable, it would not be safe to
consider this approach. However, classification results by this approach are presented in the last section.

As a suggestion for future research, implementation of a non-compact arbitrary shape support region
and area independent feature extraction routine would be an interesting case of study. Although fully
automated detection would not be supported, a combined radiologist-CAD approach with potentially
great results would be possible.

• A 9x9 sliding window based approach was also examined. This is expected to be more accurate, as its
results’ magnitude does not differ due to differences in ROI area (it is constantly 81 pixels). Furthermore,
it makes a fully automated detection effort possible. An example of a figure calculated in this manner
can be seen in fig. 6.3e, in contrast to the same feature calculated according to the previously mentioned
approach shown in 6.3c. A 5 pixel wide stripe around the image is being disregarded during classification
in order to avoid the effect of edge artifacts that might be present in this stripe.

GRADIENT FILTERS (C3)

Gradient filters include:

• Kirsch kernels

• Roberts kernels

• Sobel filters (implemented by library scipy [131, 132])
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(a) axial T2 image (b) marked lesions (ROIs)

(c) lbp(1,8) histogram 9th bin for ROI based partitioned space(d) circumscribed rectangles around original ROIs

(e) lbp(1,8) histogram 9th bin calculated by 9x9 pixels sliding
window

Figure 6.3: axial T2 (14th slice) derived images for patient TCIA.aaa0054

• Gradients (implemented by library numpy [133])

• Real part of Gabor filters (implemented by scikit-image [134]) for scales ranging between 2 and 8 mm.
The reason for choosing these scales is described in [75].

• Gaussian filters (implemented by scikit-image) for scales ranging linearly between 2 and 8 mm.

• Li dot and line filters (the use of which is reported by [75] and explained in [88]) with scales ranging
linearly between 2 and 8 mm.

WAVELET COEFFICIENTS (C4)

Wavelet coefficients include:

• Haar wavelet coefficients (implemented by pywavelet)

• Daubechies wavelet coefficients (implemented by pywavelet)

In order to incorporate lower decomposition levels in the pixels, scikit-image zoom function was used for the
lower detail decomposition level in order to create a replica of an image equal to the original size. In this way,
wavelet coefficients can be assigned to each pixel within the image. This means that if an original image is
512x512 pixels, the first decomposition level will consist of 3 256x256 images. By zooming in with a factor of 2,
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3 512x512 images that can fit on the original image are obtained. Therefore, only one decomposition level was
used.

Note that the details of the zoomed image are coarser. This might increase sensitivity to bigger lesions. As T2
image absolute gray values or gray value based features are most likely not an informing feature, this approach
is not expected to greatly contribute to the results. However, it might be very useful for obtaining informations
from functional MRI images, such as ADC maps. An example of Daubechies LH coefficients visualized at the
first decomposition level over the prostate of TCIA patient aaa0072 is presented in fig. 6.4b. Note that the
black surrounding is not actually feature computed value, but values assingned for visualization. The region
over which the feature values are calculated is solely confined by the prostate-circumscribed recangle.

(a) slice 13 of TCIA.aaa072 axial T2 image
(b) Daubechies LH wavelet coefficients for 1st decomposi-
tion level of slice 13 of patient TCIA.aaa0072

FRACTAL FEATURES (C5)

Fractal features include:

• Image fractal dimension (proposed in [32])

• Histogram fractal dimension (proposed in [32])

For this category, the same methods as described in section 6.2.2 regarding a ROI or sliding window based
approach have been applied. However, fractal dimension is only defined for a rectangular support region,
therefore this method could not be extended to an arbitrary shape ROI generalization either way. Unfortu-
nately, as fractal dimension of our images fluctuates between 1.4 and 1.6 it is not possible to visualize as in
case of section 6.2.2.

CLASSIFICATION

Decision objective for classification is to assign a pixel a hard label, wether it is considered above or below
Gleason score 7. Data space consists of 198-dimensional vectors referring to pixels of all prostates combined
together in a single set. Classifiers that have been examined include a Random Forest(RF) and a Radial Ba-
sis Function (RBF) kernel Support Vector Machine (SVM). While for the Random Forest no preprocessing is
required, for the SVM classifier the following preprocessing steps had to be taken:

1. Scale features to zero mean and unit variance as SVM is strongly dependend on features’ scales. A robust
scaler has been used, that disregards outliers by using data only between the 25th and the 75th percentile
(Robust Scaler of the library scikit-learn [135]).

2. Conduct PCA analysis on the new scaled feature set (implementation by scikit-learn). Eigenvalues growth
is stored in output text files and in all of the cases keeping the 15 first features is deemed as representative
enough.
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3. Apply PCA by keeping the first 15 features. In case of an independent test set save the transform and
apply the same transform on the test set (implementation by scikit-learn).

Although results of SVM and RF are comparable, it is deemed as preferable to use a Random Forest as fea-
ture scaling might result in loss of potentially useful information. Generally, minimal preprocessing would be
preferred to keep original information as intact as possible.

Finally, class balance is achieved by random undersampling of the majority class. Random undersampling has
been chosen as it is stated in [136] that more advanced undersampling techniques yield no significantly better
results. Moreover, a minority class oversampling techinique is thought as potentially dangerous as the nature
of our data requires minimal assumptions and moving in a data space as closely to the original as possible.
Therefore, as results as examined in terms of accuracy, 0.5 is the worst case.

EMPROST 0.1 SOFTWARE DESCRIPTION

In order to calculate the features that we want and evaluate classification approaches, emPROST 0.1 has been
developed in python 2.7. It has been tested on Windows 7 and Ubuntu 16.04. It works in two stages:

1. Call feature calculation routine before taking any further steps.

• Inputs This call accepts as input the root directory under which the dataset is stored and the root
directory under which prostate segmentation information and label information is stored. Addi-
tionally, a working directory has to be provided. Optionally, one can also choose which features to
calculate (between families 1,2,3,4 and 5), whether to use the entire prostate segmentation or sim-
ply the peripheral zone and the method according to which the features will be calculated (sliding
window or Region of Interest based, described in 6.2.2).

• Outputs Inside the working directory a folder for each patient is created. This folder is named
under the patient-ID to whom it refers. It contains segmentation and labeling information as well
as the T2 image of this patient. Moreover, it contains all the features that refer to this patient to a
single file (.npy file). Several text files necessary for retrieving the features by name are also stored.
Inside the working directory itself, some text files referring to a directory mapping of the dataset are
created. A progress file is also created and updated during runtime. The last one makes possible to
pause and resume feature calculation which might be very computationally intensive. Execution
can be reset or resumed to any required stage just by modifying or deleting the corresponding files.

2. Classify and evaluate.

• Inputs Inputs should be classification method and working directory (which reflects the way that
features have been calculated). Optionally, a switch that would indicate which features to consider
can be provided. An input of multiple working directories is possible, in which case independent
test set evaluation or fused dataset cross-validation is possible. Details such as cross validation
folds can be editted in the source code. Instead of classification, also principal components analy-
sis (PCA) could be applied with the same arguments. Finally, a brief experiment description should
be provided, after which the corresponding output files will be named.

• Outputs In case of classification text files with validation accuracies are saved in the working direc-
tory. In case of PCA analysis the size of the eigenvalues is saved in a text file. The name of the files
depends on the name given as input in the previous step.

3. Additional functionalities
On top of these main tasks, this software can also retrieve and save in itk image format any feature given
by name for any patient for reviewing purposes. Moreover, massive preprocessing tasks such as image
size reduction can be applied to the entire dataset. In case that a SimpleElastix [137] Simple-ITK built
is present on the machine, also fine tuned BSpline registration specifically required for preprocessing
during label registration is possible.

The full documentation of emPROST can be found in Appendix A.

EXPERIMENTS

The experiments that have been ran, concern the following cases:



38 6. METHODS

• distinction between peripheral zone and whole prostate

• distinction between fully automatic and combined approach (see sec. 6.2.2)

• distinction between Random Forest and Support Vector Machine classifiers

• distinction between C2 and C5 features only versus the entire feature set

The first step would be to see what can be achieved by extracting features from T2 and doing a cross validation.
Therefore, the first two experiments concern cross validation on the same datasets. Thereafter, training models
on PCMM (TCIA) and applying on TCIA (PCMM) shall show if it is possible to apply a model trained on a
dataset on a completely new one. A further distinction is between whole prostate and peripheral zone. As
the peripheral zone is more homogeneous than the central gland, better performance is expected. Finally, the
differences in performance between a sliding window and a ROI based estimation of C2 and C5 features is
examined.

In cases where a cross validation on the same dataset was performed, the cross validation is applied on a per-
patient basis. This means that for a dataset cosisting of images of N patients, at each validation iteration, the
model is trained on N-1 images and tested on the last one. This is to avoid an overestimation of the achieved
accuracies, as training and testing on pixels of the same image would yield results better than they really are.
Concering data of the PCMM dataset, it is noteworthy that 4 out of totally 15 patients appear to not have
any positive labels. Of course, as we know that they do, this paradox can be attributed to the label assignment
process described in Appendix B. Therefore, the labels assigned to these patients are definitelly wrong and they
will not be considered. This leaves us with only 11 patients from the PCMM dataset. A conclusion from these
mistakes is, initially, the need for development of a rigid protocol for assigning the labels. Moreover, we can
observe that there is a big proportion of the available part of the PCMM dataset’s labeling, which is definitelly
wrong. This could raise questions about the labeling of the rest of the PCMM dataset. The questionable quality
of the labeling of our data could detrimentally affect the quality of the models evaluated on these data.

The four tables in which results are reported distinct between:

• training on TCIA - testing on TCIA (cross validation) (see 7.1)

• training on PCMM - testing on PCMM (cross validation) (see 7.2)

• training on TCIA - testing on PCMM (independent dataset) (see 7.3)

• training on PCMM - testing on TCIA (independent dataset) (see 7.4)
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CLASSIFICATION PERFORMANCE

The values reported throughout are classifier mean accuracy (abbreviated as MA) and, wherever applicable,
variance between cross validation folds (abbreviated as var).

Table 7.1: Per patient cross validation results on TCIA. RF MA stands for Random Forest cross validation mean accuracy (when applicable),
RF A var is Random Forest Accuracy variance and the same hold for SVM which stands for Support Vector Machine.

examined case RF MA RF A var SVM MA SVM A var
all features, whole prostate, semi automatic 0.694 0.017 0.643 0.002
all features, peripheral zone, semi automatic 0.623 0.029 0.671 0.006
C2, C5 features, whole prostate, semi automatic 0.668 0.02 0.647 0.004
C2, C5 features, peripheral zone, semi automatic 0.674 0.023 0.66 0.009
all features, whole prostate, fully automatic 0.558 0.002 0.555 0.003
all features, peripheral zone, fully automatic 0.544 0.003 0.543 0.002
C2, C5 features, whole prostate, fully automatic 0.559 0.002 0.559 0.003
C2, C5 features, peripheral zone, fully automatic 0.542 0.003 0.538 0.002

Table 7.2: Per patient cross validation results on PCMM. RF MA stands for Random Forest cross validation mean accuracy (when applica-
ble), RF A var is Random Forest Accuracy variance and the same hold for SVM which stands for Support Vector Machine.

examined case RF MA RF A var SVM MA SVM A var
all features, whole prostate, semi automatic 0.5 0.004 0.485 0.006
all features, peripheral zone, semi automatic 0.52 0.002 0.508 0.002
C2, C5 features, whole prostate, semi automatic 0.5 0.005 0.493 0.006
C2, C5 features, peripheral zone, semi automatic 0.51 0.002 0.518 0.002
all features, whole prostate, fully automatic 0.53 0.004 0.51 0.002
all features, peripheral zone, fully automatic 0.508 0.0 0.516 0.0
C2, C5 features, whole prostate, fully automatic 0.52 0.004 0.514 0.002
C2, C5 features, peripheral zone, fully automatic 0.518 0.0 0.509 0.0

FEATURE SIGNIFICANCE

As the Random Forest classifier evaluates relative feature importance during the intrinsic feature bagging pro-
cedure, a report of the relative significance of the computed features is provided below. Note that Random
Forest feature importance evaluation has the following drawbak: when some of the features are correlated,
information is only drawn by random feature within this feature selection. This will yield an importance index
which will be higher for this specific feature, whereas the rest of the features in this selection will be underes-
timated. In our case, where many features are correlated within subsets (for example the GLCM features) only

39



40 7. RESULTS

Table 7.3: Independent dataset validation-training on TCIA, testing on PCMM. RF MA stands for Random Forest cross validation mean
accuracy (when applicable), RF A var is Random Forest Accuracy variance and the same hold for SVM which stands for Support Vector
Machine.

examined case RF MA RF A var SVM MA SVM A var
all features, whole prostate, semi automatic 0.469 - 0.548 -
all features, peripheral zone, semi automatic 0.454 - 0.514 -
C2, C5 features, whole prostate, semi automatic 0.469 - 0.553 -
C2, C5 features, peripheral zone, semi automatic 0.39 - 0.506 -
all features, whole prostate, fully automatic 0.503 - 0.509 -
all features, peripheral zone, fully automatic 0.507 - 0.522 -
C2, C5 features, whole prostate, fully automatic 0.502 - 0.509 -
C2, C5 features, peripheral zone, fully automatic 0.509 - 0.522 -

Table 7.4: Independent dataset validation-training on PCMM, testing on TCIA. RF MA stands for Random Forest cross validation mean
accuracy (when applicable), RF A var is Random Forest Accuracy variance and the same hold for SVM which stands for Support Vector
Machine.

examined case RF MA RF A var SVM MA SVM A var
all features, whole prostate, semi automatic 0.512 - 0.52 -
all features, peripheral zone, semi automatic 0.5 - 0.453 -
C2, C5 features, whole prostate, semi automatic 0.513 - 0.523 -
C2, C5 features, peripheral zone, semi automatic 0.515 - 0.459 -
all features, whole prostate, fully automatic 0.508 - 0.504 -
all features, peripheral zone, fully automatic 0.469 - 0.495 -
C2, C5 features, whole prostate, fully automatic 0.508 - 0.503 -
C2, C5 features, peripheral zone, fully automatic 0.48 - 0.49 -

one of them will be assigned a high performance value. Nonetheless, this evaluation shall provide an adequate
insight concerining wich feature sets are the most important.

The mean value of the significance for all relevant experiments is presented in the tables below, whereas box
plots of the same values accross all experiments can be found in Appendix C. As feature performance is ex-
pected to vary between cases where a ROI based or a sliding window approach is used, performance assess-
ment is split in the following two cases:

• a semi-automated ROI based approach and

• a sliding window approach.

Feature names are as extracted from the emPROST software. They are briefly explained below:

• mean, standard deviation, skewness, kurtosis, median1, median2, median3, lbp like variance, entropy
are the first order statistics presented in section 3.1.1. median1, median2, median3 are described in
equation 3.3. Entropy is defined in 3.6. lbp like variance is defined in 3.9.

• lbp Rx Py z is the z th bin of the local binary patterns histogram for radius x pixels and y points. LBPs are
defined in 3.14.

• lddpp R1x1 R2x2 P1y1 P2y2 z is the z th bin of the local directional derivative patterns histogram for inner
radius x1 pixels, outer radius x2 pixels, y1 points along the inner radius and y2 points along the outer
radius. LDDPs are defined in 3.15.

• Haralick mean x, Haralick range x, GLRLM mean x, GRLRM x refer to the x t h Haralick or Gray Level Run
Length Matrix feature mean or range along 4 directions (0, 45, 90, 135) respectively (see section 3.1.2).

• Kirsch kernel rotation x, Roberts kernel rotation x refer to Krisch and Roberts kernels respectively, defined
in 3.10 and 3.10. Sobel filter and unoriented gradient are self explaining.

• For Gabor, Li and Gaussian filters, scales are 8 exponentially increasing scales that consist of different
amounts of pixels, depending on the resolution, so that a range of 2-8mm can be captured. This ap-
proach has turned out to be efficient, as many prostate lesions are on this scale (see [75]). Li filters are
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defined in [88]. li dot refers to a blob sensitive filter and li line to a line sensitive one.

• Daubechies, Haar refer to Daubechies or Haar wavelet coefficients for the first level of decomposition
respectively.

• Image FD, Histogramm FD refer to image fractal dimension or histogram fractal dimension respectively.
Fractal dimensions are treated in 3.4.
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Table 7.5: Feature significance-ROI based approach

Feature Name Feature Significance

Daubechies LH 0.0111625344974
Gabor scale2 direction 135 0.0106361723195
Gabor scale5 direction 90 0.0104846094792
Gabor scale0 direction 90 0.0101294485862

lbp R1 P8 28 0.0101245405794
lddp R1 1 R2 2 P8 13 0.0101076422316
lddp R1 1 R2 2 P8 5 0.00998145627495

Gabor scale1 direction 0 0.00991327061626
lddp R1 1 R2 2 P8 34 0.00971352114923

Roberts kernel rotation 1 0.00965891378378
median3 0.00960929039081

Unoriented gradients axis 1 0.00952792739766
Gabor scale3 direction 0 0.00944506887119

lddp R1 1 R2 2 P8 18 0.0090883611321
Gabor scale4 direction 135 0.00899838484282

lddp R1 1 R2 2 P8 9 0.00894898546261
Li filter lines scale 5 0.00882438865607

lbp R1 P8 26 0.00880830241525
lddp R1 1 R2 2 P8 15 0.00878758474599

Haralick range 7 0.0087762355016
lddp R1 1 R2 2 P8 11 0.00871104263822
lddp R1 1 R2 2 P8 7 0.00866870953446
Li filter lines scale 2 0.00852636696168

Haralick range 1 0.00848985606136
lbp R1 P8 25 0.00841718867053
lbp R1 P8 10 0.00840835678381
lbp R1 P8 19 0.008403659206

Haralick range 2 0.00828366264256
lddp R1 1 R2 2 P8 32 0.00809009634422

lbp R1 P8 12 0.00805314584668
lbp R1 P8 16 0.00797042462509
Gauss scale 8 0.00786571163636

lbp R1 P8 5 0.00786496582883
Gabor scale7 direction 135 0.00783977969809

kurtosis 0.00781646753139
lbp R1 P8 35 0.00767174439179

Haar LL 0.00762253459147
Li filter dots scale 7 0.0076013568964

Haralick mean 8 0.00751275141405
Haralick mean 4 0.00737502681607

lbp R1 P8 33 0.00737029056761
image FD 0.00736130755681

lbp R1 P8 7 0.00735032279972
Haralick mean 10 0.00729795558321

Kirsch kernel rotation 8 0.00726000134909
GLRLM range 2 0.00721265053985

Kirsch kernel rotation 5 0.00715662663707
lbp R1 P8 30 0.00711622606455

Gabor scale7 direction 90 0.00711309536202
lddp R1 1 R2 2 P8 25 0.00710592308353

Gabor scale5 direction 135 0.00702595787371
skewness 0.00701822445277

Li filter dots scale 5 0.00698538767027
lbp R1 P8 9 0.00697055854152

lddp R1 1 R2 2 P8 23 0.00694056325096
Gabor scale4 direction 45 0.00688815047626

GLRLM mean 2 0.00685450802234
Haralick mean 1 0.00685264592299

lddp R1 1 R2 2 P8 21 0.0068331530652
GLRLM mean 1 0.00676007990377

Kirsch kernel rotation 2 0.00673697579201
Gabor scale6 direction 90 0.00672906840517

lbp R1 P8 36 0.00665860280142
lbp R1 P8 2 0.00663389245351

Haar HL 0.00661753436483

Feature Name Feature Significance

lbp R1 P8 20 0.00653785339392
GLRLM range 5 0.00649003714783

Li filter lines scale 6 0.00643601462925
Haralick mean 2 0.00639260260701

Gabor scale4 direction 90 0.00639071437446
Gabor scale1 direction 45 0.00634377827786

U 0.00633862098842
Haralick range 5 0.00615410859193

lddp R1 1 R2 2 P8 17 0.0061187973664
lbp R1 P8 24 0.00604573494365

lddp R1 1 R2 2 P8 1 0.00602122353705
Gauss scale 5 0.0059661994441
Gauss scale 1 0.00591906561594

GLRLM mean 5 0.00563491866985
Haralick range 12 0.00555015815733

Gabor scale5 direction 45 0.00550795448569
Haralick range 8 0.00546622646791

lddp R1 1 R2 2 P8 3 0.00545738623225
Daubechies HH 0.00544728661865
Haralick mean 7 0.00539613280865

Gabor scale6 direction 0 0.00537608713338
Gabor scale4 direction 0 0.00530970381446
Kirsch kernel rotation 7 0.00528809281863

Li filter lines scale 3 0.0052396528765
Li filter dots scale 1 0.00521229925674
lddp R1 1 R2 2 P8 27 0.00520656110058
lddp R1 1 R2 2 P8 16 0.00519343989601

Gauss scale 6 0.0051899298955
Daubechies HL 0.00515036880209

lddp R1 1 R2 2 P8 29 0.00510642216387
Gabor scale0 direction 135 0.00510231353539

Haralick range 11 0.00505190626336
Haralick mean 12 0.00502960343399

Daubechies LL 0.00485792610533
lddp R1 1 R2 2 P8 36 0.00470522366795

Gabor scale5 direction 0 0.00464088713463
lddp R1 1 R2 2 P8 30 0.00457940673565

Gauss scale 2 0.00456757325213
Li filter lines scale 4 0.00452394338671

median1 0.00448419008847
Gauss scale 3 0.00428946007681
lbp R1 P8 23 0.00422056442136

Li filter dots scale 2 0.00419404855368
lbp R1 P8 3 0.00417286474165

GLRLM range 4 0.00407685537905
Gauss scale 4 0.00407667810438

Haralick mean 3 0.00404667745008
lbp like variance 0.00381688149332

Gabor scale7 direction 45 0.00380976272062
mean 0.00370617865063

Kirsch kernel rotation 6 0.00359086924995
Kirsch kernel rotation 3 0.0035831486833

Gabor scale6 direction 135 0.00354934408885
lddp R1 1 R2 2 P8 26 0.00354174300477

GLRLM mean 3 0.00352957813716
lddp R1 1 R2 2 P8 22 0.00352903514392

Kirsch kernel rotation 4 0.00351303560906
Gabor scale3 direction 135 0.00351064507597

Li filter lines scale 7 0.00350753647026
Li filter dots scale 6 0.00349944653712
lddp R1 1 R2 2 P8 24 0.00349191879531
Li filter dots scale 8 0.00348044386091

Haralick mean 5 0.0034601514911
Haralick mean 13 0.00344603493549
Haralick range 10 0.00343370251987

Feature Name Feature Significance

Gabor scale0 direction 45 0.00342679095012
lddp R1 1 R2 2 P8 20 0.00340951520161

Sobel filter 0.00338126513956
lddp R1 1 R2 2 P8 28 0.00336510020633

Haralick mean 11 0.00335545150039
Haralick mean 9 0.00335469222705

Li filter dots scale 4 0.00335015142284
lbp R1 P8 6 0.00333835871345

lbp R1 P8 34 0.00333035483815
GLRLM mean 4 0.00332240829709

Haralick range 13 0.00330576063977
Kirsch kernel rotation 1 0.00325367404273

Li filter dots scale 3 0.00322725098804
lbp R1 P8 32 0.00321563560718
lbp R1 P8 15 0.00320942614518

Unoriented gradients axis 2 0.00320908597071
lbp R1 P8 22 0.0031786741044
lbp R1 P8 4 0.00316727342694

GLRLM range 3 0.00316716457223
Gabor scale2 direction 0 0.00316359058058

GLRLM range 1 0.00314148801888
lbp R1 P8 8 0.00312613285884

lddp R1 1 R2 2 P8 31 0.00309351616083
lbp R1 P8 13 0.00304901322091
lbp R1 P8 18 0.00299215133888
lbp R1 P8 21 0.00292621514968
lbp R1 P8 1 0.00285010469346

lbp R1 P8 31 0.00284499838049
median2 0.00280055590256

histogram FD 0.0027592163277
DCT 0.00267273567213

lddp R1 1 R2 2 P8 6 0.00266969767907
lbp R1 P8 27 0.00265387198784

Gabor scale6 direction 45 0.00263196556022
Gabor scale2 direction 45 0.00258351483041

lddp R1 1 R2 2 P8 33 0.00246078512107
entropy 0.00242724657238

lddp R1 1 R2 2 P8 14 0.00238807977371
Haralick range 4 0.00226548830133
Haralick range 3 0.00224479933299

lbp R1 P8 11 0.00222261581085
Gabor scale0 direction 0 0.00219423202378

lbp R1 P8 17 0.00215213944642
Gabor scale1 direction 135 0.00209305323851

Haar HH 0.00204822991143
lbp R1 P8 14 0.00181210945575

Gabor scale7 direction 0 0.00180944032187
Haralick range 9 0.00179568772907

Gabor scale1 direction 90 0.00174821247035
lddp R1 1 R2 2 P8 4 0.00173965526106

lddp R1 1 R2 2 P8 35 0.00170983720799
standard deviation 0.00163956758388

lddp R1 1 R2 2 P8 19 0.00162122408481
lddp R1 1 R2 2 P8 2 0.00155658309718

Haralick range 6 0.00155110083015
Gabor scale3 direction 90 0.00143469534661

lbp R1 P8 29 0.00120814619045
lddp R1 1 R2 2 P8 12 0.00114323375837
lddp R1 1 R2 2 P8 10 0.0010061824656

Haar LH 0.000997831872377
Li filter lines scale 8 0.000884510803127
lddp R1 1 R2 2 P8 8 0.000797522141631
Li filter lines scale 1 0.000711542516032

Gauss scale 7 0.000605527853797
Gabor scale2 direction 90 0.000517858597515
Gabor scale3 direction 45 0.000500100053772
Roberts kernel rotation 2 0.000498969587154

Haralick mean 6 0.000410848375898
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Table 7.6: Feature significance-sliding window approach

Feature Name Feature Significance

Gabor scale6 direction 90 0.00842215836757
Haralick range 7 0.00841903955573

lddp R1 1 R2 2 P8 14 0.00831397565918
lbp R1 P8 1 0.00821154377519

Li filter lines scale 4 0.00812841241833
Gabor scale6 direction 0 0.00812285654039

lddp R1 1 R2 2 P8 28 0.00810167537295
Li filter lines scale 5 0.00809138952582

lbp R1 P8 6 0.00807090095503
lbp R1 P8 17 0.00806819869891

lddp R1 1 R2 2 P8 32 0.00805723825033
lddp R1 1 R2 2 P8 11 0.00805292249742

lbp R1 P8 20 0.00801440212432
lddp R1 1 R2 2 P8 34 0.00797582671723

Gabor scale0 direction 45 0.00796231936367
lddp R1 1 R2 2 P8 19 0.00795193990574

Haar HL 0.00793012822934
Gauss scale 5 0.00792612381977

lddp R1 1 R2 2 P8 12 0.00784678869401
Daubechies HH 0.0078390962998

lbp R1 P8 18 0.00781319575152
Li filter lines scale 7 0.00779725246519

Haralick range 1 0.00779460775088
Haralick mean 1 0.00779426763859
Haralick mean 8 0.00778434954246

Li filter dots scale 7 0.00778143968311
Gabor scale2 direction 0 0.00777252505935

Haralick range 8 0.00774275123882
Gauss scale 2 0.00773690162349

Gabor scale4 direction 0 0.00771327960749
Gabor scale2 direction 90 0.0077093143076

Li filter dots scale 5 0.00770581018428
Gabor scale0 direction 90 0.00768723915484

lbp R1 P8 27 0.00760086144304
Gabor scale4 direction 45 0.00756336945732

GLRLM mean 4 0.00755240135355
lddp R1 1 R2 2 P8 25 0.00754454612367

Gabor scale0 direction 0 0.0075209025639
lbp R1 P8 33 0.00751839075973

Gabor scale7 direction 0 0.00749847558613
lbp R1 P8 22 0.00747167297496

standard deviation 0.0074656373612
Unoriented gradients axis 1 0.00742858223526

Li filter lines scale 3 0.00741922261199
lddp R1 1 R2 2 P8 20 0.0074023460773

lbp like variance 0.00739326963642
Gabor scale1 direction 0 0.00736884074955

Haralick mean 11 0.00732651779449
kurtosis 0.00732164887134

Gabor scale5 direction 0 0.0073135520583
lddp R1 1 R2 2 P8 9 0.00730348980135

Sobel filter 0.00729408425265
Haralick mean 5 0.00729244004016

lbp R1 P8 14 0.00727028035299
lddp R1 1 R2 2 P8 7 0.00720628093168

Daubechies LH 0.00719369000253
Haralick range 12 0.00711789358571
GLRLM mean 2 0.00708731831836

lbp R1 P8 3 0.00707719482148
lbp R1 P8 36 0.00699294934395
lbp R1 P8 11 0.00693333842131

Daubechies HL 0.00692646485636
Gabor scale3 direction 45 0.00679071859087

lbp R1 P8 8 0.00669687616107
lbp R1 P8 29 0.00663656963506

Feature Name Feature Significance

U 0.00654608043497
Haralick mean 12 0.00642875808083

lddp R1 1 R2 2 P8 22 0.00622614799643
lbp R1 P8 35 0.00620391950958
Gauss scale 7 0.0061170981542

Kirsch kernel rotation 5 0.00607606579697
lddp R1 1 R2 2 P8 36 0.00605842053442
lddp R1 1 R2 2 P8 3 0.00597966408097

histogram FD 0.00584727877285
Kirsch kernel rotation 3 0.00582829272

lddp R1 1 R2 2 P8 27 0.00572647034801
lbp R1 P8 32 0.00571879824204

Gabor scale3 direction 0 0.00568014615149
Gabor scale1 direction 135 0.00553854811701

Kirsch kernel rotation 2 0.00549591499379
lbp R1 P8 30 0.00538364779137

lddp R1 1 R2 2 P8 30 0.00536817131154
lddp R1 1 R2 2 P8 1 0.00536549900534

Haralick mean 6 0.00532076005194
lddp R1 1 R2 2 P8 5 0.00527268263338

Gauss scale 8 0.00501645428419
Kirsch kernel rotation 6 0.00498024072515

lbp R1 P8 34 0.00495469651971
lddp R1 1 R2 2 P8 23 0.00495060482847

lbp R1 P8 12 0.00452552705167
lbp R1 P8 31 0.00416269216955
lbp R1 P8 28 0.00409115215269

Haralick mean 10 0.00397146907827
Haralick mean 13 0.00396172493602
GLRLM mean 1 0.00395990883157

Gabor scale3 direction 135 0.00395727737489
Gabor scale2 direction 135 0.0039350223707

entropy 0.00389793387773
DCT 0.00388999959359

Gabor scale1 direction 90 0.00383234504108
lbp R1 P8 21 0.00381301087041

median3 0.00380064028242
skewness 0.00378855311449

Gabor scale7 direction 135 0.00378815869669
Kirsch kernel rotation 8 0.0037739558485

Li filter dots scale 6 0.00375339392878
lddp R1 1 R2 2 P8 8 0.00373784869946
Li filter lines scale 8 0.0037215450195
lddp R1 1 R2 2 P8 6 0.00370607332483

lddp R1 1 R2 2 P8 26 0.0036902580116
lbp R1 P8 9 0.00368228082809

Haralick range 2 0.0036639751183
Haralick range 13 0.00364015104864

lbp R1 P8 24 0.00363822495949
median1 0.00363629943057

Haralick range 10 0.00361545150163
lbp R1 P8 26 0.00361212574608

GLRLM mean 5 0.00361069449384
Li filter lines scale 2 0.00360998654802
lddp R1 1 R2 2 P8 21 0.00360089914822

Kirsch kernel rotation 1 0.00359511648647
Roberts kernel rotation 1 0.0035538802644

GLRLM range 1 0.00355301514278
Li filter lines scale 1 0.00355273609262

Roberts kernel rotation 2 0.00354143055522
Gauss scale 6 0.00353180085236

Li filter dots scale 2 0.0035275226823
lddp R1 1 R2 2 P8 10 0.00352523292055

mean 0.00350435799256
Gauss scale 1 0.00349387105586

Feature Name Feature Significance

Kirsch kernel rotation 4 0.00349159870617
Daubechies LL 0.00348212858751

Gabor scale5 direction 90 0.00347752245837
Haar LL 0.00347687015941

Gabor scale1 direction 45 0.00345234715648
Haralick mean 9 0.00344737551353

lddp R1 1 R2 2 P8 29 0.00344027192357
Haralick mean 3 0.00342892187153

lbp R1 P8 2 0.0034130053769
Haralick range 11 0.00340876217216

Gabor scale4 direction 90 0.00340505709255
Li filter dots scale 1 0.00338382186827

lbp R1 P8 5 0.00337020888223
Haar HH 0.00336940782033

Haralick mean 4 0.00336188277802
Gauss scale 3 0.0033543482997

lbp R1 P8 4 0.00335074714613
lbp R1 P8 16 0.00334099760601

Haar LH 0.00334029277988
Gabor scale2 direction 45 0.00330327609051

GLRLM range 2 0.00329954299575
Haralick mean 2 0.00328905784387

lddp R1 1 R2 2 P8 17 0.00327838962443
lbp R1 P8 15 0.00327732513599
lbp R1 P8 7 0.00327731153492

Gabor scale4 direction 135 0.00325727369699
lbp R1 P8 19 0.00325278318507

Haralick range 4 0.0032524320311
Gabor scale6 direction 45 0.00324584562612

lddp R1 1 R2 2 P8 31 0.00324155241718
lbp R1 P8 25 0.00323998678174
lbp R1 P8 13 0.00323962935852

GLRLM mean 3 0.00323646536666
Haralick range 3 0.00322907165843

Gabor scale5 direction 45 0.00322415292949
lddp R1 1 R2 2 P8 18 0.0031862199697

Kirsch kernel rotation 7 0.00318596822751
Gabor scale0 direction 135 0.00318246725671

lddp R1 1 R2 2 P8 15 0.00317866100759
median2 0.00315894750617

Gabor scale6 direction 135 0.0031527876122
Gabor scale3 direction 90 0.00314550538153

GLRLM range 4 0.00313964978178
Haralick mean 7 0.0031249489669
GLRLM range 3 0.00312272946221

lbp R1 P8 23 0.00310116071595
Gauss scale 4 0.00306740648338

Haralick range 6 0.00306729878731
lddp R1 1 R2 2 P8 4 0.00306496939691

lddp R1 1 R2 2 P8 13 0.00303367794026
Haralick range 9 0.00300306073085

Li filter dots scale 3 0.00300061032869
Gabor scale7 direction 45 0.00299948659471

Li filter dots scale 4 0.002994651456
Gabor scale7 direction 90 0.00298644329331

lddp R1 1 R2 2 P8 24 0.00295922293955
lddp R1 1 R2 2 P8 2 0.0029451937237

Gabor scale5 direction 135 0.00293498223452
Haralick range 5 0.00290928030404

Li filter lines scale 6 0.00288839605144
Unoriented gradients axis 2 0.00288470826008

GLRLM range 5 0.0028646648981
Li filter dots scale 8 0.00284630081527

image FD 0.00278815479633
lddp R1 1 R2 2 P8 33 0.00278317029101

lbp R1 P8 10 0.00266287613629
lddp R1 1 R2 2 P8 16 0.00266208064017
lddp R1 1 R2 2 P8 35 0.00263305175518





8
CONCLUSIONS

MAIN CONCLUSIONS

The main conclusions can be drawn from tables 7.1, 7.2, 7.3, 7.4. The following become clear:

• In literature, commonly reported accuracy results range between 0.8 and 0.95. These results have been
achieved by using multi-parametric MRI, which included T2 and ADC or DWI and in some cases DCE.
Only one case where only T2 is used is reported (see table 5.1). This indicates that T2 sequences alone
are inadequate for a radiomics prostate cancer diagnosis. Although there is information about the
presence of cancer or not (as shown in table 7.1, classification results are above random chance), it is
not enough to proceed in clinical application. This information is usually seen as dark regions on the T2
images, as shown in fig. 8.1.

• The distinction between peripheral zone versus examination of the entire prostate did not improve the
results. Thus, the distinction in peripheral zone in our approach is deemed as redundant when talking
solely about T2 images.

• The distinction between Random Forest or the proposed SVM classification scheme did not make a sig-
nificant difference in classification results.

• Semi-automatic ROI based estimation of C2 and C5 features performs significantly better than the fully
automatic sliding window approach. However, this performance is still not good enough.

• Transfering a model trained on a dataset to a completely new dataset was not possible.

• The method proposed for label assignment in Appendix B was not trustworthy.

• The most significant features seem to be Gabor filters, local directional derivative patterns, local binary
patterns and wavelet coefficients. Intuitivelly, someone would expect that C2 and C5 features would be
the most informative, as they rely merely on texture. Within the same dataset, where the gray values and
contrasts are within the same range, this is a reasonable outcome. It is possible that this feature evalu-
ation merely relies on the cross validation experiments, as independent dataset validation experiments
are practically a random guess.

Furthermore, the following should be noted:

• The best performance is achieved by ROI based calculations of the C2 and C5 features (see 6.2.2). How-
ever, big variances are observed in this case. This reassures our fears that the fact that the ROI size has an
impact on the features’ values. This might raise questions about the reliabillity of this method. However,
it seems to be a promising approach if the issue of shape and area dependence is resolved.

• No differences in performance are observed when using the entire feature set or just the feature set
C 2,C 5. In our case, where features are extracted from T2 images, this makes sense as:

1. Features in both C2 and C5 are designed to capture differences in texture and do not rely in absolute
grey values. This could be beneficial in case of T2 imaging, which provides anatomic information
and lesions are expected to appear more rough than healthy tissue (see figure 8.1). Moreover, this
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(absolute gray value independence) could potentially make applicabillity of a model trained on a
dataset and used on a new one possible.

2. Those features comprise 110 out of 198 extracted features, bearing more than half of the available
information either way.

3. Note that although working on a space of almost half the dimensionality would be computationally
efficient for the classification process, the most computationally expensive procedure in the whole
pipeline is by far the extraction of C2 and C5 features with a sliding window. Regarding the “curse
of dimensionality”, redundant features are disregarded either ways either by PCA or by Random
Forest feature selection.

4. Note that this should not apply in case of mpMRI, where, for example, first order statistics that
strongly rely on gray values have been found to hold great informational value in case of Diffusion
Weighted Images (DWI).

5. While cross validation on the TCIA dataset showed that there is indeed information about the pres-
ence of a lesion in the T2 sequences alone, results of the PCMM cross validation experiment were
slightly above random chance. The label assignmet process should be considered responsible for
this. Moreover, regarding the independent dataset validation experiments, we observe that clas-
sification with the SVM classifier on the whole prostate for a ROI based estimation of C2 and C5
features is above random chance. In fact, it is comparable to the best results achieved for cross
validation on the PCMM dataset alone. Although accuracies are too low to draw a safe conclusion
about applicability on a new dataset, this could imply that this could be a good candidate case that
should be further examined for the application of a model on a new dataset.

• If considering a dataset consisting of all pixels for all patients during cross validation, training and testing
sets are likely to contain different pixels from images refering to the same patient. In this case, accuracy
will be overestimated. Therefore, it is necessary to validate on a dataset consisting of pixels that refer to
patients’ images that have not been used during training.

• If a single patient is kept out for validation, reported results will probably fluctuate depending on that
patient’s lesions size and shape. This could be seen as a warning for real life applications, but in our case
where more stable results are preferred, more patients should be used to validate

Figure 8.1: A lesion label image (right) and its corresponding point on the axial T2 image (left). Lesions on axial T2 images appear as rough
dark regions.
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FUTURE RESEARCH

As future research suggestions, a repeat of the experiment with bigger and better labelled datasets is recom-
mended. This way, safer conclusions could be drawn about the limits of the proposed method. In these ex-
periments, application of multiparametric MRI is also recommended. Dynamic contrast enhanced images
that provide information about the vascularization could potentially add great informational value. Diffusion
weighted derived images, such as ADC maps are expected to severely improve the results and therefore are
highly recommended. This is clear throughout the literature, where great results are reported wherever DWI
derived images are used.

Regarding application on T2 images, C2 and C5 ROI based features (see section 6.2.2) might be a great candi-
date for achieving better overal accuracies in a combined CAD-radiologist detection approach. An implemen-
tation of a ROI-size independent and non-compact arbitrary shape support region feature extraction method
might yield interesting results.

A fully automated scheme in case of the ROI-based estimation of C2 and C5 features could also be possible.
This could be done by an iterrative window size optimization. The process can be as described below:

1. Apply a big window over the entire image slice and find candidate regions.

2. Apply the same procedure with a decreasing window size on each of these regions and further refine
search areas.

3. Repeat until a lower limit of window size or until an optimum.

Although the sliding window approach for C2 and C5 features did not seem to bring any good results, thus
meaning that it probably is not a good method for feature extraction, this might be an alternative that could
work. However, the best case is expected to be a semi-automatic approach. Wherever only T2 sequences
are available, this method could provide a good solution. A further advantage of this method, is that feature
extraction in this way is not computationally expensive and can be even done on a simple PC.

Perhaps the most promising perspective about fully automated CaP-MRI radiomics overall, seems to be appli-
cation of deep learning methods. By applying a cleverly designed CNN, manual extraction of features would be
redundant and only the optimal features would be extracted and used. No matter how clever manual feature
definition might be, mathematically optimal features will be most likely missed. Note that even in this case,
exploitation of information provided by DWI would be necessary.

Convolution neural networks have turned out to be the most efficient tool for addressing generic computer
vision challenges, such as ImageNet [138]. The problem in case of CaP-MRI readiomics, is the limitted amount
of the available data. In all of the reported studies, number of patients does never exceed 300. As a comparison,
dataset used for training ImageNet was comprised of 15 million high resolution labelled images for 22000
classes, meaning hardly 650 images for each class. Therefore, an estimation of an adequate dataset size would
be in the order of thousands of patients. Such a dataset does not yet exist, however, there are attempts by
the community to buid a scalable system that would accommodate a large repository containing images from
multiple clinics [139].

In any case, in order for the proposed systems to be clinically applied, they should prove better in some aspect
than the current diagnostic techniques. Better might imply higher diagnostic accuracy or a lower degree of
invasiveness. This seems as a hard goal for the current state of the art. For exapmple, the first clinical appli-
cation of radiomics was about breast cancer, in July 2017 [140]. Therefore, in order for clinical application to
be possible, great results on a research level is a strong prerequisite. A good candidate for achieving that good
results could be deep learning, discussed before. After that, long evaluation studies are also necessary. As a
conclusion, in any case, extended clinical application of radiomics is expected to take place in several years.

Finally, as long as efforts are done in the direction of supervised learning, what is of utmost importance is the
definition of a robust labeling method. Correct labelling is a tough and essential process. Whereas in table 7.1
classification yields results that imply that there is information in sequences, results of table 7.2 indicate the
significance of correct labelling. Therefore, for proceeding in supervised learning approaches, labelling is a
crucial step that needs to be adressed. Manual labeling by one or more radiologists is not the best option, as it
is subject to human subjection. However, as seen by our results, it has to be the safest option given the current
circumstances.

In case where big enough datasets are available, it could be enough to label an entire prostate as the maximum
Gleason Score present in a prostate. In that case, our classification space would consist of healthy or not
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healthy prostates, making it a lot easier to increase even more the size of the datasets by reducing the required
manual labor.

Summing up, the following are recommended, in descending order of significance:

1. The development of a safe and repeatable labelling protocol

2. The use of multiparametric MRI, including T2, DWI and if possible DCE derived images

3. Application of deep learning methods by the time when adequately large datasets become available

4. For a semi-automated approach, redefinition of C2 and C5 features for a non compact arbitrary shape
support region
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MANIFESTO

PURPOSE OF EMPROST

emPROST software is being developed to extract and finally compare radiomic features from prostate-MRI
images. Radiomic features are a popular way to diagnose cancer or even classify tumor aggressivness and
several such features have been suggested and applied in several CAD attempts reported in literature.

emPROST software caclulates most of these features and saves them to files (.npy files) that represent 4D ar-
rays, where the first 3 dimensions correspond to MRI-image dimensions and the fourth refers to the 198 feature
space corresponding to each pixel in the image.

Subsets of these features can subsequently be retrieved and used for processing.

Warning: This software has been used and tested only for T2 axial MRI images of the prostate. Moreover,
no gold standard for feature values This means that some values are obtained as features, but it is not
reliable to estimate the accuracy according to which these values represent the actual feature values. The
best way to test would be to get a refference image and compare, but such a testing object is not available.

Note: Many parameters are hardcoded within the source code and thus failsafe, but if made available to a user
interface, controls about these parameters should be implemented (for example parameter ws which stands
for window size in should be a positive odd integer).

READ BEFORE YOU GO-HOW TO USE IT

emPROST implements all necessary preprocessing steps, such as figuring out which images to use, under
which directory they are stored, the corresponding mask files etc. However, a sequence of actions is needed:

1. Manual preprocessing for segmentations and ground truth extraction.

2. Feature calculation.

3. Data processing (classification experiments).

PREPROCESSING

Manual preprocessing requires prostate and ROI segmentations to be provided, where, in the mask images,
1 corresponds to prostatic volume or a lesion and 0 to non-prostatic volume or healthy tissue respectively.
Optionally a segmentation image of the peripheral zone can be provided, in case that features just for the
peripheral zone are required. These files must be saved in a folder that contains the dicom image that they
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have been extracted from. This is necessary for making the correct correspondence to the files in the dataset
according to the dicom header patient ID attribute. The root directory of all these folders will be referred to as
the mask root directory. Summarizing, mask root directory must contain N subfolders, referring to N patients
respectively, each one of which contains:

• A dicom (or MeVisLab dicom/tif format) file, to which segmentations correspond.

• no_previous_mask_init.nii file that corresponds to the prostate segmenation.

• pz_mask.nii (optionally) that corresponds to segmentation of the peripheral zone.

• rois_mask_.nii file that corresponds to the annotated lesions.

A reliable and free software to do segmentations is itk-snap.

Note: A note.txt file might be also present. In that case, this patient is automatically disregarded. This file
should contain notes for the reason that this patient is not taken into account.

Note: All file names (in italics) must be precisely as shown in italics.

Note: Any ROIs or ROI parts that fall outside the prostate or peripheral zone segmentation are disregarded.

CALCULATE FEATURES

After the mask root directory is manually created, feature calculation and storage routine can be invoked. This
is automatic, given the necessary inputs. Inputs are

-Data root directory, which is the root directory of our dataset. -Mask root directory, described above. -Working
directory. This can be empty for the moment, but it will be filled as features are calculated. It will finally
contain several text files that contain information about what is stored where and several folders, each one
of which will contain the original MRI image, the .npy file containing the features for the same image, text
files that contain features’ names, image segmentations and ROI masks. Text files containing the directories
of files (images and masks corresponding to patients) are first created. Then the folders are created, named
after the corresponding patient ID. -Optionally selection of features that are to be estimated, whether to use the
entire prostate segmentation or just the peripheral zone and whethern to use sliding window or circumscribed
rectangle ROI estimation approach for C2 and C5 feature sets can be additional inputs.

Note: A status file called processed_cases.txt is saved also within the working directory. In that case, patients
can be processed in batches, as if the program stops, feature extraction will continue from the patient that was
last processed. If this file is editted or deleted, it will start over.

PREPROCESS AND CLASSIFY

This is also automatic. The user can choose between SVM and Random Forest classifiers. In case of SVM where
preprocessing is needed, it is done within the routine. Results (in terms of accuracy of a randomly subsampled
subset of the dataset) are saved in text files within the working directory. Results text files’ are defined by the
user and should reflect the experiment that they refer to. Extracted accuracies refer to pixel classification, thus
for example a 60 % accuracy would mean that 60 % of all pixels in all images are classified correctly.

DEPENDENCIES

Python version is 2.7.13. The following list of libraries should be included:

-mahotas

-pydicom



A.2. NAVIGATING THE DATASET 51

-imblearn

-scipy

-numpy

-skimage

-SimpleITK (preferably including Simple Elastix, but not necessary)

-re (usually already present in most python installations)

FUTURE VERSIONS

It is recommended that for future implementations, a custom ROI-size independent arbitray support region
C2 feature evaluation routine is developped (in the current version, mahotas implementations are deployed,
that do not support these attributes).

Moreover, a speedup with multithreading during feature evaluation is a good idea.

Finally, as feature files are basically bitmaps with feature values, this format could be optimized as follows:
- Use compression - Save original image, features and segmentations within the same file, so that they don’t
have to be saved in subdirectories within the working directory. This would also make visualization of features
easier. A potential way to achieve this is itk vector image, which is unfortunatelly not supported in SimpleITK.

NAVIGATING THE DATASET

MAKING THE DATASET MAP

Module separate_modalities hosts all functions that generate the text files stored within the working directory
and containing the directories of all interesting files (masks and images) for each patient. Finally, only patients
about who all information is available are further processed. This selection is done internally, whereas text
files contain directories for all available patients.

separate_modalities.check_mask_integrity(mask_dir, working_directory, patient_ID,
mask_format_name, fix_masks=False)

“Masks are extracted with a in-house developped tool (SegmentationTool3) on MeVisLab some masks
are hollow on some planes (only the contours are saved). Check for a mask if it is hollow or not in each
plane. If it is so, fill holes with ones and save a corrected copy. It performs operations on a single mask
file each time. This function is by default deactivated, as most masks are fixed manually. However, it is
still possible to deploy.

Parameters

• mask_dir (string ) – mask directory

• working_directory (string ) –

• patient_ID (string ) –

• mask_format_name (string ) – which kind of segmentation files to fix (peripheral
zone or entire prostate). It has not been tested on ROI segmentations. Either way,
it is not necessary for ROI segmentations. Thus, it can be no_previous_mask_init.nii
for the entire prostate or pz_mask.nii for the peripheral zone.

• fix_masks (bool ) – If set to True, perform a check, correct problematic masks and
save corrected files. Default is False.

separate_modalities.correct_masks(working_directory, mask_root_directory,
mask_format_name)

“Read directories file from uncorrected_mask_paths.txt, serial feed to check_mask_integrity and update
file entry for mask. corrected_masks.txt map is thereafter created, which contains the directories of the
masks actually used during feature extraction.

Parameters
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• mask_dir (string ) – mask directory

• working_directory (string ) –

• mask_format_name (string ) – which kind of segmentation files to fix (peripheral
zone or entire prostate). It has not been tested on ROI segmentations. Either way,
it is not necessary for ROI segmentations. Thus, it can be no_previous_mask_init.nii
for the entire prostate or pz_mask.nii for the peripheral zone.

separate_modalities.file_list2(working_directory, data_directory, reset=False)
Create and save file all_modalites.txt in the working directory, which is the major map to a raw dataset.
This file contains in lines the patient ID followed by lines that refer to the sequence description, pixel
spacing and file full path (dicom directory). It is readable by humans. Then the next patient ID follows
and so on.

Parameters

• working_directory (string ) –

• data_directory (string ) – raw dataset root directory

• reset (bool ) – If an all_modalities.txt file already exists, delete it and make a new
map. Default is False.

separate_modalities.fix_dictionaries(reference, dic2)
“check if dicitonaries have the same keys. If not, delete entries to make them.

Parameters

• reference (dictionary ) – true dictionary

• dic2 (dictionary ) – dictionary to edit

separate_modalities.get_dictionary(modality_directories, reset=False)
Return a dictionary with patient IDs as keys and modality directories as entries corresponding to them.
For parallel dictionairies creation. Input is T2_directories.txt or DWI_direc, or masks_corrected

separate_modalities.mask_list(working_directory, mask_root_directory, status_file_name,
file_name_ending)

“Create text files with patient IDs and the corresponding directories of masks or ROIs. It can generally
be used to map any file referring to this patient and is stored withn the patient subdirectory under the
mask root directory.

Parameters

• working_directory (string ) –

• mask_root_directory (string ) –

• status_file_name (string ) – name of the minor map text file

separate_modalities.process_files(working_directory, data_root_directory,
mask_root_directory, mask_format_name)

Entire dataset mapping and preprocessing, which includes mapping the dataset, retrieving modality
and mask directories. Then check for which of all candidate patient IDs all necessary data is present.
Necessary data includes in current version: * axial T2 image * prostate or peripheral zone segmentation
image * Regions of interest image Finally only keep patients for which all this information is present. For
these patients, create within the working directory a subdirectory named after the patient ID in which
all these information are copied and feature files are going to be stored.

Parameters

• working_directory (string ) – At this point working directory can be completely
empty

• data_root_directory (string ) –

• mask_root_directory (string ) – It is the directory under which all patient ID sub-
derectories are present. Those must contain an itk image referring to the prostate
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or peripheral zone segmentation, an itk image referring to ROIs and a MeVisLab di-
com/tif image corresponding to the axial T2 image of the patient, after which masks
are extracted. This is necessary to retrieve patient ID and spacing information.

• mask_format_name (string ) – indicates if whole prostate segmentations or periph-
eral zone segmentations shall be used. Can be no_previous_mask_init.nii for the en-
tire prostate or pz_mask.nii for the peripheral zone.

separate_modalities.retrieve_modalities(modality_name, working_directory, reset=False)
Create and save files in the working directory, that are minor maps to a raw dataset. Theses files are
generated by map all_modalities.txt and like the format of all_modalities.txt, contain in lines the patient
ID followed by lines that refer to the sequence description, pixel spacing and file full path (dicom direc-
tory).They are readable by humans. Then the next patient ID follows and so on. The difference is that
they only refer to files that correspond to a specific sequence description. This description is retrieved
by all_modalities.txt by a regular expression matching, so that they match the pattern of a specific se-
quence (e.g. T2 or DWI). In case a new dataset is introduced, where sequence descriptions differ, regex
matches can be editted in a single point in the code, which is in global_functions.regex_match

Parameters

• modality_name (string ) – can be only T2 or DWI.

• working_directory (string ) –

• reset (bool ) – If the file already exists, delete it and make a new map. Default is
False.

ESTIMATING FEATURES

The following modules are used to extract prostate radiomic features mentioned in literature. Whenever a
method described in a paper is used, this is ceited either in the docstring of the function, or in inline comments
in the source code. Five major modules are meant to caclulate the features. Each one of them has a structure,
in which, a major function named as the module itself (e.g. C1.C1, C2.C2 etc) is called. This function then
calls other functions implemented in each module and returns a dictionary with all the features that it has
calculated. All these modules are contained within the directory src/features, a subdirectory of the main source
code directory.

The following holds for these modules:

• C1 calculates first order statistics.

• C2 calculates second order statistics.

• C3 is for gradient features.

• C4 is for wavelet features. Note that extraction of features for multiple scales after laplacian pyramidal
decomposition is implemented in main1.

• C5 is to calculate fractal features.

C2 and C5 features can be calculate either by the sliding window or by the ROI based approach.

ROI BASED APPROACH

ROIs over which to calculate the features were defined by the ground truth. As mahotas library (or any library
available) does not cover the case of support regions of arbitrary shape, the method to apply this was to con-
sider a circumscribed rectangle around each ROI marked as positive. As a slice might contain multiple ROIs,
the remaining healthy space was then partitioned in a set of rectangles. The boundaries of those were defined
by the boundaries of the rectangles corresponding to positive ROIs extended until the end of the image and
the boundaries of the image itself. This can be formulated as follows:

If N contours described by a parameter ti (xi , yi ), i ∈ [1, N ] respectively lie within a rectangle bounded by x ∈
[x0, x1] and y ∈ [y0, y1], then for each xi , yi holds xi ∈ [x0

i , x1
i ] and yi ∈ [y0

i , y1
i ], where x0

i , x1
i ∈ [x0, x1] and
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y0
i , y1

i ∈ [y0, y1]. Then the ROIs over which the features are calculated are defined by the intersections of the
lines defined by

x = x0, x0
1 , . . . , x1

y = y0, y0
1 , . . . , y1

Warning: For C2, implemented mostly by mahotas library, feature values were found to have a dependence
on the region size (the smaller the region the smaller the value).

SLIDING WINDOW

9x9 pixels sliding window is a more secure alternative.

C1 FEATURES

C1.C1(img)
Returns first order features. See C1.window_statistics for more

ws is an important parameter (window size) and it is defined within the function source code. It refers
to a window which is wsxws pixels. Preset value is 9x9.

See also:

documentation of C1.window_statistics

Parameters

• img (np.array ) – the image about which features are calculated

• intensity_levels (int ) – represents the dataset global maximum of intensity lev-
els

Returns dictionary with all features

C1.window_statistics(window, intensity_levels)
Calculates first order statistical radiomic features.

Features are described in detail in literature review. These include first four order moments, and some
special features, the reference of which can be find in the block comments in the code. All features are
calclulated for a neighborhood of size ws x ws around each pixel. Parameter ws is defined in function
C1.C1 source code which in turn calls C1.window_statistics via global_functions.pixelwise_features giv-
ing as input the window, rather than the entire image. Then this function is called for a window of size ws
x ws for each pixel in the image and for this window (referring to a single pixel) all features are returned
in form of a dictionary.

Parameters

• window (np.array ) – window on which features are calculated

• intensity_levels (int ) – represents the dataset global maximum of intensity lev-
els

Returns dictionary with first order statistics, shape of the image containing 1x4 lists

C2 FEATURES

C2.C2(img, return_array=False)
returns 2nd order statistics as described in literature review. GLRLM and GLCM are calculated over a
5 grey level image to avoid sparse matrices. LBP and LDDP are calculated over a 256 grey level image.
14th Haralick feature is not calculated as mahotas implementation used here is buggy and for a sliding
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window excecution hangs at arbitrary points. However, for ROI based aproach, it seems to be working.
Still, it is not considered safe to use it.

For references see:

M. M. Galloway, “Texture analysis using gray level run lengths,” Com- puter graphics and image process-
ing, vol. 4, no. 2, pp. 172–179, 1975.

R. M. Haralick, K. Shanmugam, et al., “Textural features for image clas- sification,” IEEE Transactions on
systems, man, and cybernetics, no. 6, pp. 610–621, 1973.

Note that for the last reference, all 28 features are calculated.

Parameters

• img (np.array ) – image for which the second order statistical features presented in
the above papers are extracted

• return_array (bool ) – if True, an array with all features for the specified pixel is
returned. This is used to describe the feature vector referring to the specific pixel in a
sliding window aproach. Therefore, it should be only set in sliding window aproach,
otherwise an exception should be expected. Default is False (in accordance with de-
fault values of the main function).

Returns dictionary or numpy array with features

C2.GLRLM(img, intensity_levles)
calls chainGLRLM for rotated versions of input image and returns dictionary with GLRLM features

C2.GLRLM_features(p)
Returns 5 Grey Level Run Length Features as described in M. Galloway paper

M. M. Galloway, “Texture analysis using gray level run lengths,” Com- puter graphics and image process-
ing, vol. 4, no. 2, pp. 172–179, 1975.

Parameters p (list ) – p is the matrix containing gray level run lengths (2D)

Returns a list containing all 5 features

C2.chainGLRLM(img, intensity_levels, width)
returns normalized grey level run length matrix for already rotated image.

An image (img input parameter) is given as input. The image has to already be rotated. A rotated image
looks like this: if the original image is an np.array with shape (512, 512), a rotated image at 45 degrees will
have 1,2,..., 1024, 1023,...,2,1 row elements. This means that the pixels are given as row elements for each
diagonal line. Then all subsequent occurences of all gray level are counted for each row and returned as
the GLRLMat. For more information see:

M. M. Galloway, “Texture analysis using gray level run lengths,” Com- puter graphics and image process-
ing, vol. 4, no. 2, pp. 172–179, 1975.

Parameters

• img (np.array ) – Rotated image for which the consecutive occurences of all gray
levels are caluclated

• intensity_levels (int ) – the number of intensity levels present in an image

• width (int ) – the width of the image in pixels

Returns list 2 x 2 list containing countings of consecutive occurences of all gray levels

C2.lddp(image, radius1, radius2, points, ignore_zeros=False, preserve_shape=True)
Custom implementation of 2nd order local directional derivative pattern Originally obtained from ma-
hotas.features.lbp_transform function.

An inner and an outer radius with respect to a point, which is each image pixel are selected. Then, a
set of points are obtained by interpolation on these radii, according to the number defined by points
argument. Note that if, for example, 8 points are given, there are 8 points that are considered on the
inner radius defined by equal angles starting from the central point and each one of them. If these two
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points (the origin, or the centre) and each point define a straight line, also 8 points on the same lines are
considered for the outer radius.

For reference see :

Guo, Zhenhua, et al. “Local directional derivative pattern for rotation invariant texture classification.”
Neural Computing and Applications 21.8 (2012): 1893-1904.

Parameters

• image (np.array ) – numpy array input image

• radius1 (int ) – inner radius (in pixels)

• radius2 (int ) – outer radius (in pixels)

• points (int ) – number of points to consider. It should be given regarding the inner
radius, as the second set of points will be aligned to the ones lying in the inner circle.

Returns lddp histogram

C3 FEATURES

C3.C3(img, resolution)
Returns all gradient features

All the gradient features include the following:

•Kirsch gradients

•Roberts gradients

•Sobel filter

•Unoriented gradients

•local binary patterns

•local directional derivative patterns

•Gabor filter coefficients

•Gaussian blurred images

Note that for the Gabor and Gaussian filters, scales range between 2 and 8 mm as to capture scales within
which there could be a lesion. This method is mentioned in:

G. Litjens, O. Debats, J. Barentsz, N. Karssemeijer, and H. Huisman, “Computer-aided detection of prostate
cancer in mri,” IEEE transactions on medical imaging, vol. 33, no. 5, pp. 1083–1092, 2014.

Parameters

• img (np.array ) – the image about which features are calculated

• resolution (float ) – represents the physical dimension to which a pixel corre-
sponds

Returns dictionary with all gradient features.

C3.li(img)
Implementation of the Li filter

Filter is described in detail in:

Q. Li, S. Sone, and K. Doi, “Selective enhancement filters for nodules, vessels, and airway walls in two-
and three-dimensional ct scans,” Medical physics, vol. 30, no. 8, pp. 2040–2051, 2003.

Roughly, it is a dot and line sensitive filter.

Parameters img (np.array ) – image on which the filter is applied
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Returns a list containing two numpy arrays. The first is the filter that refers to dots, while the
second refers to lines. Each of these has the shape of the image (a value for each pixel)

C4 FEATURES

C4.C4(img)
Returns Daubechies and Haar wavelet coefficients

Daubeschies wavelet coefficients are averaged on a 7 x 7 window as mentioned in:

R. Lopes, A. Ayache, N. Makni, P. Puech, A. Villers, S. Mordon, and N. Betrouni, “Prostate cancer charac-
terization on mr images using fractal features,” Medical physics, vol. 38, no. 1, pp. 83–95, 2011.

Depending on the input image, the maximum level of scale decomposition might vary. This depends on
pywavelet library that is used to extract the coefficients.

C4.pad_to_shape(coeffs, original_shape)
“pad with zeors to get the original slice shape for each scale. return_arry[0,0] and [0,1] are the original
dims

C5 FEATURES

C5.C5(img, return_array=False)
Returns fractal dimension features.

The algorithms that have been deployed to extract fractal features is the popular 3D box counting. In the
following reference:

R. Lopes, A. Ayache, N. Makni, P. Puech, A. Villers, S. Mordon, and N. Betrouni, “Prostate cancer charac-
terization on mr images using fractal features,” Medical physics, vol. 38, no. 1, pp. 83–95, 2011.

It is recommended that 8-tap Daubechie wavelet coefficients could be used to estimate the fractal di-
mension (FD) but this method has not been implemented. 3D box counting is presented in:

B. Stark, M. Adams, D. Hathaway, and M. Hagyard, “Evaluation of two fractal methods for magnetogram
image analysis,” Solar Physics, vol. 174, no. 1-2, pp. 297–309, 1997.

Fractal dimmensions are estimated for the image itself given as input img and the histogram of the same
image, a method recommended in

D. Lv, X. Guo, X. Wang, J. Zhang, and J. Fang, “Computerized charac- terization of prostate cancer by
fractal analysis in mr images,” Journal of magnetic resonance imaging, vol. 30, no. 1, pp. 161–168, 2009.

Implementation of the algorithm has been properly adapted from an implementation by Francesco
Turci, retrieved online from https://francescoturci.wordpress.com/2016/03/31/box-counting-in-numpy/
on 10 Feb 2017.

Parameters

• img (np.array ) – Image the fractal dimension of which is estimated. Also, image
histogramm’s FD is estimated.

• intensity_levels (int ) – represents the dataset global maximum of intensity lev-
els

• return_array (bool ) – if True, an array with all features for the specified pixel is
returned. This is used to describe the feature vector referring to the specific pixel in a
sliding window aproach. Therefore, it should be only set in sliding window aproach,
otherwise an exception should be expected. Default is False (in accordance with de-
fault values of the main function).

Returns dictionary with image and histogram FDs or numpy array in sliding window mode

https://francescoturci.wordpress.com/2016/03/31/box-counting-in-numpy/
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CLASSIFICATION

In the current version, an automated main function is implemented for the module classification. This calls re-
cursively excecution instructions for all possible scenaria for the experiments that were run, having hardcoded
the corresponding directories. This should be editted during any external application.

load_npy.get_feature_names(patient_directory)
Get all features names in a list with the corresponding order that they are saved in the vectors of the .npy
feature file.

Parameters patient_directory (string ) – Where feature name files are saved.

Returns list: all feature names in the correct order.

load_npy.get_features_subset(patient_directory, feature_file, feature_names)
Get a subset of all features for an image as a 4d numpy array.

Parameters

• patient_directory (string ) –

• feature_file (string ) –

• feature_names (list ) – Features that should be retrieved

Returns 4d numpy array: Requested features of the specific image for the volume of interest.

load_npy.load_file(patient_directory, feature_file, feature_name, return_array=False)
Retrieve a single feature from a feature file and either return it for further processing or save it as itk image
for visualization. Visualization shows the true feature values for the volume of interest over which the
feature has been calculated and sets the rest of the image to zero, so there is a common world matrix with
T2 image and masks and comparison is made possible. However, those zero values do not correspond to
actual feature values. Moreover, during classification or processing, no feature values outside the mask
are taken into account.

Parameters

• patient_directory –

• feature_file –

• feature_name –

• return_array – If set to True, array is returned for further processing, otherwise an
itk image file is saved for visualizing the specific feature. Default value is False.

Returns 3d numpy array a feature value (only if return_array is set to True)

classification.RF_trees_number_optimization(working_directory, keep_features, no_xval=5,
case_name=’undefined_’, multi_dir=False)

call classify RF recursively for several numbers of trees of the random forest

classification.case_split(input_string)
used to be main, but with change of cluster can be submitted as a single job

classification.classify_RF(working_directory, keep_features, no_xval=5, no_trees=60,
case_name=’undefined_’, multi_dir=False)

Train and evaluate a random forest model with cross validation. Save the results of each cross validation
fold in a text file within the working directory.

Parameters

• working_directory (string ) –

• keep_features (string ) – full path to a text file containing all features (in lines)
that should be loaded

• file_name (string ) – name of the file where the results are saved

• no_xval (int ) – number of cross validation folds. Default is 5.
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• no_trees (int ) – number of trees of the random forest. Default is 60.

Returns list of cross validation folds accuracies

classification.classify_RF_independent(training_directory, test_directory, keep_features,
no_trees=70, case_name=’undefined_’,
multi_dir=False)

Train a Random Forest model and evaluate on an independent dataset. Save the resulting accuracy in a
text file within the working directory.

Parameters

• training_directory (string/list ) – root directory or directories of the training
set

• test_directory (string ) – root directory of the test set

• keep_features (string ) – full path to a text file containing all features (in lines)
that should be loaded

• case_name (string ) – name of the file where the results are saved. It is not the full
name, as the file will always end with _independent_test_RF.txt. This is the initial part
of the file name, that should be indicative of the case (e.g. peripheral_zone_all_features_).

• no_trees (int ) – Number of trees used by the random forest. Default is 70.

• multi_dir (bool ) – Must be true if training_directory is a list of directories. This
means that data under multiple roots can be used as a training set and a model on
multi-clinic data can be trained. Default is False.

Returns classification accuracy

classification.classify_svm(working_directory, keep_features, no_xval=5, no_features=15,
case_name=’undefined’, multi_dir=False)

Scale the data with RobustScaler (see documentation of sklearn.preprocessing.RobustScaler) as SVM is
sensitive to the data scales. Then apply PCA on the new dataset. Train and evaluate a svm model with
cross validation. Save the results of each cross validation fold in a text file within the working directory.

Parameters

• working_directory (string ) –

• keep_features (string ) – full path to a text file containing all features (in lines)
that should be loaded

• file_name (string ) – name of the file where the results are saved

• no_xval (int ) – number of cross validation folds. Default is 5.

• no_features (int ) – number of features that are kept during PCA. Default is 15.
(Usually many more features are present).

Returns list of cross validation folds accuracies

classification.classify_svm_independent(training_directory, test_directory, keep_features,
no_features=15, case_name=’undefined’,
multi_dir=False)

Train a SVM model and evaluate on an independent dataset.

Scale the data with RobustScaler (see documentation of sklearn.preprocessing.RobustScaler) as SVM is
sensitive to the data scales. Then apply PCA on the new dataset. Train and evaluate a svm model. Save
the resulting accuracy in a text file within the working directory.

Parameters

• training_directory (string/list ) – root directory or directories of the training
set

• test_directory (string ) – root directory of the test set
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• keep_features (string ) – full path to a text file containing all features (in lines)
that should be loaded

• case_name (string ) – name of the file where the results are saved. It is not the full
name, as the file will

always end with _PCA_independent_svm.txt. This is the initial part of the file name, that should be
indicative of the case (e.g. peripheral_zone_all_features_). :param bool multi_dir: Must be true if train-
ing_directory is a list of directories. This means that data under multiple roots can be used as a training
set and a model on multi-clinic data can be trained. Default is False. :param int no_features: number of
features that are kept during PCA. Default is 15. (Usually many more features are present).

Returns classification accuracy

classification.discriminate_dataset(working_directory)
Returns a list with all full paths for all the files that shall be processed within a working directory.

classification.get_all_features(working_directory, features_switch)
Save a keep features text file inside the working directory. This contains in each line a feature name that
should be loaded. This file is based on only one patient directory within the working directory. Therefore,
it is assumed that the same features have been calculated for all patients, otherwise an exception will be
raised when trying to load features that have not been calculated.

Parameters

• working_directory (string ) –

• features_switch (list ) – Which of the features to retrieve (from families C1, C2,
C3, C4, C5).It is important to feed the features switch in order (eg never give f3, f5,f1
but f1, f3, f5)

Returns string which is full path to keep features text file

classification.independent_patient_xval(working_directory, keep_features, case_name)
Leave one out cross validation. Training set is the total of pixels of all -1 patients, test set is set of pixels
of 1 patient.

classification.load_data(working_directory, feature_file, keep_features, ex-
clude_circumscribed=True, class_balance=True)

Load and return as numpy array the selected calculated features from the specified feature file. If no
positive labels are found in an image this is possibly due to registration errors and nothing is returned.

Parameters

• working_directory (string ) –

• feature_file (string ) – full path to feature file

• keep_features (string ) – full path to a text file containing all features (in lines)
that should be loaded

• exclude_circumscribed (bool ) – If set to True, pixels where circumscribed ROIs
do not correspond to actual label values are disregarded. This only has an effect to
ROI based calculation of C2 and C5 features. Default value is True.

• class_balance – If set to True, majority class random undersampling is performed
and a balanced dataset is returned. Default value is True.

Returns numpy array with feature vectors for all the pixels

Returns numpy array with the labels corresponding to the vectors in the first returned array

classification.load_dataset(working_directory, keep_features, multi_case=False)

Returns dataset with all selected features for all feature files within a working directory. (The entire dataset,
where data points refer to vectors that correspond to pixels for evey image.)

Parameters



A.5. FURTHER FUNCTIONALITIES 61

• working_directory (string ) –

• keep_features (string ) – full path to a text file containing all features (in lines)
that should be loaded

Returns

classification.multi_directory_data(dir_list, keep_features)
Load and return data as an array of vectors and the corresponding labels from multiple directory roots.
These arrays and labels can be pipelined to any sklearn model.

Parameters

• dir_list (list ) – list of full root directories of datasets (the corresponding working
directories, where all feature files are saved. Not the actual raw dataset directories.)

• keep_features (string ) – full path to a text file containing all features (in lines)
that should be loaded

Returns numpy array with feature vectors for all the pixels of all feature files under dir_list
entries

Returns numpy array with the labels corresponding to the vectors in the above array

classification.reduction_analysis(working_directory, case_name=’undefined’, fea-
tures_switch=[’f1’, ‘f2’, ‘f3’, ‘f4’, ‘f5’], multi_dir=False)

Perform PCA analysis and save the eigenvalues in descending order in text files. This analysis is done
both on the original data and on data that has been scaled with an outlier robust scaler, which selects val-
ues within the 25 and 75th percentile of all values. (see documentation of sklearn.preprocessing.RobustScaler)

Parameters

• working_directory (string ) –

• file_name (string ) – name of the output text file

• features_switch (list ) – Which of the features to retrieve (from families C1, C2,
C3, C4, C5).It is important to feed the features switch in order (eg never give f3, f5,f1
but f1, f3, f5). Default value is [’f1’, ‘f2’, ‘f3’, ‘f4’, ‘f5’].

FURTHER FUNCTIONALITIES

Some further functionalities have been developped. global_functions module is essential for all other mod-
ules, carrying out some vital tasks needed globally. Other modules ( change_to_nifti and registration ) just
automate some preprocessing steps but their presence is optional during automated routines. However, regis-
tration.dicom_series_to_nii is still essential and should allways be present.

global_functions.ROI_based_calclulations(img, ROIs, the_function)
For ROI based calculation of C2 and C5 features. Apply the function defined as input to regions defined
by the circumscribed rectangles around regions of interest defined at ROIs. ROIs is a numpy array repre-
senting the mask where 0 refers to healthy tissue and 1 to lesions. There can multiple lesions of arbitrary
shape. Also a 4-connected 1-pixel binary errosion and dilation is applied on ROIs to compensate for reg-
istration errors of the ROIs masks, that usually are the outputs of a registation and salt and pepper noise
is frequently observed. Lesions with a total area less than 10 pixels are disregarded as they are probably
a result of registration errors that are not compensated during erosion-dilation.

Parameters

• numpy array img (2d ) –

• numpy array ROIs (2d ) –

• object the_function (function ) –

Returns features dictionary, where keys are features’ names and entries are 2d numpy arrays
with the feature values over each pixel.
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global_functions.custom_pixelwise_features(img, ws, function, *extra_args)
Returns features for the windows within the image calculated by function.

It is a common issue that many features have to be calculated for each pixel within the image, with
respect to a neighborhood of pixels, referred to as window. Window has a size ws x ws. pixelwise_features
calls iteratively a function that calculates all these features. Function function can have in this version
arbitrarilly many arguments given as the input specified by extra_args. pixelwise_features calls then this
function for every window within the image. This means, that , for example, two directly subsequent
windows only differ in one value.

The important thing about pixelwise_features is that it takes in account boundary conditions. For a pixel
that lies close to the boundary and a window of size ws x ws would yield an index error, is truncated to
a window just fitting in the image. For example, the window of a pixel at img[1,0] for ws = 9, would be
img[0:5, 0:4].

It is used for sliding window estimation of C2 and C5 features. Otherwise, pixelwise_features which calls
an implementation from ndimage library, which is way more efficient is used.

Parameters

• img (np.array ) – image for which the features are calculated

• ws (int ) – window size

• function (function.object ) – function that calculates the features. It only takes
one input, namely window (e.g. img[0:5, 0:4]

• *extra_args (any ) – Any further set of parameters that function function could take
as input

Returns dictionary where keys are features names and entries are 2d arrays with feature val-
ues over the image.

global_functions.healthy_rois(img, roi_inds, ROIs, a_function)
For ROI based calculation of C2 and C5 features. Apply the function defined as input to regions defined
by the dual of circumscribed rectangles around regions of interest defined at ROIs. Healthy ROIs are
defined by the intersections of lines defining the boundaries of circumscribed rectangles around regions
defined by ROIs, thus they are compact and recangularly shaped.

Parameters

• numpy array img (2d ) –

• roi_inds (list ) – indices of lines defining the boundaries of circumscribed rectan-
gles

around regions defined by ROIs :param 2d numpy array ROIs: :param function object a_function: func-
tion to apply on healthy regions

Returns features dictionary, where keys are features’ names and entries are 2d numpy arrays
with the feature values over each pixel.

Returns A list with coordinates of the healthy ROI circumscribed rectangle is also returned.

global_functions.pixelwise_features(img, ws, function, *extra_args)
Sliding window feature estimation by using ndimage.filters.generic_filter, which is much faster than the
custom implementation.

Parameters

• img (np.array ) – image for which the features are calculated

• ws (int ) – window size

• function (function.object ) – function that calculates the features. It only takes
one input, namely window (e.g. img[0:5, 0:4]

• *extra_args (any ) – Any further set of parameters that function function could take
as input
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Returns 2d numpy array with feature values over the image.

global_functions.regex_match(necessity, string_to_match)
“Gathering all regex matches used throughout the code to make it applicable to other datasets by mod-
ifying. Therefore, if we have to train on a new dataset where sequence description is in a new format,
only this function has to be editted and all regex matches used to make the dataset mapping will be up
to date. Generally regex are extensivelly used to navigate through map files and identify if something is
a directory, etc. In short, it is used to find what is what.

..note:: Downside is that this script will have to be imported to other scripts under module directory.
This makes it impossible to import any script from modules directory to global_functions script,
otherwise mutual import will happen and an exception will be raised.

Parameters necessity (string ) – can be patient image, patient image, axial T2, axial DWI,
windows or unix directory

It indicates what we are looking for, which means that we are questioning if a string is a directory or an
image etc. :param string_to_match:

Returns Bool, True if the string is what we are looking for, false otherwise.

global_functions.set_in_range(img, indices, values)
Crop an array to the boundaries specified by indices and fill it with specified values. New image shape
and values must have the same shape.

Parameters

• numpy array img (2d ) –

• array indices (numpy ) –

• numpy array values (2d ) –

Returns 2d numpy array with new shape and values

global_functions.single_values_to_img(dictionary, img_shape)
“For ROI based features, replicate img.shape times the single value over the entire ROI

global_functions.trim_array_to_ROI(img, return_support_region=False)
Crop an image to the boundaries specified by the circumscribed rectangle of the region defined by a
mask.

Parameters

• numpy masked array img (2d ) – mask is the region of interest.

• return_support_region (bool ) – If set to true, also the boudaries of the circum-
scribed rectangle are returned.

Default is False.

Returns 2d numpy array, cropped image

Returns If return_support_region is set, also a list with coordinates of the ROI circumscribed
rectangle is returned.

Warning: global_functions module should never import any other module from a relative path.

change_to_nifti.change_an_image(img_file)
Change an image from mhd or mha itk format to nii itk format. This is mostly for legacy, as in previous
efforts mhds were used.

Parameters img_file (string ) – full path to the file

change_to_nifti.find_mhds(root_directory, change_to_nifti=True)
“change all .mhd or .mha images under a root directory to .nii
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change_to_nifti.resize_nifti(img_file)
“It is a common case that image files when transferred from DICOM format use a 64 bit float format in itk
images. This function sets unsigned 8 bit integer format for mask or roi files and int 32 for other images,
resulting in an important file size reduction.

Parameters img_file (string ) – full path to the file

change_to_nifti.set_masks_world(root_directory)
“Each patient folder has 3 nii files, one for masks, one for ROIs and the axial T2. In the working directory,
each of these is set to the same values according to the mask, which is set according to the T2 DICOM.

Parameters root_directory (string ) –

registration.dcm_series_to_nii(dump_directory, working_directory, overwrite=False)

Reads dicom files from dump directory and writes single nii file in working directory for feeding in elastix.
Also creates the patient directory within the working directory.

..note:: if a file is already there it is overwritten

Parameters

• dump_directory (string ) – directory of the dicom files

• working_directory (string ) –

• overwrite (bool ) – If set to True, patient folder is removed and a new one is created.
Default is False.

registration.patient_identifier(mask_root_directory, all_modalities_file, patient_no)
Obsolete, shall not be used

registration.recursive_patient_registration(msk_root)
Obsolete, shall not be used

registration.roi_registration(directory)
Fine tuned call of Simple Elastix to apply a 3D BSpline registration on the ROIs. In order to call it, a build
of SimpleITK that includes Simple Elastix must be present. Registered file and transform are saved in the
patient subdirectory within the mask root directory. It takes as input a single argument, which is a direc-
tory. This must contain the fixed and moving images, that must be named as no_previous_mask_init.nii
and macro_mask_init.nii and both come from manual preprocessing. If for any reason the file is not
proper for processing, a note.txt file mentioning the reason for this insufficiency shall also reside within
the directory. In that case, where a note.txt file is also present, no registration is attempted.

Parameters directory (string ) –

FEATURE EXTRACTION ROUTINE

main1.apply_np_mask(image, mask)

Apply a mask on an image. Before this function is called, it is adviseable to call change_to_nifti.set_masks_world
as it is possible that some mask files and MRI image files have different world masks and this will
raise an exception.

Parameters

• image file image (itk ) – MRI itk image file

• image file mask (itk ) – mask itk image file on the specific MRI image file (which
means that if MRI image is a DWI and the mask is extracted on a T2 image it will raise
an exception.)

Returns circumscribed rectangular volume of interest on which features will be calculated.
As the prostate is a small proportion of the entire image and feature calculation is com-
putationally expensive, this speeds up excecution a lot.
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main1.calculate_features(img, rois, patient_directory, resolution, features_switch=[’f1’, ‘f2’, ‘f3’, ‘f4’,
‘f5’], sliding_window=False)

Calculates features for an image slice. All functions that implement the selected feature calculation in
the selected way are called depending on the inputs.

Parameters

• numpy array img (2d ) – Image slice

• numpy array rois (2d ) – Regions of interest on the image slice labeled 0 for healthy
and 1 for lesion

• patient_directory – Where to save feature names description files

• resolution – Image pixel physical spacing (retrieved from the MRI image header
information, not avilable in numpy)

• features_switch (list ) – Which of the features to calculate (from families C1, C2,
C3, C4, C5). Default value is [’f1’, ‘f2’, ‘f3’, ‘f4’, ‘f5’], which calculates all features.

• sliding_window (bool ) – If true, C2 and C5 features are calculated according to
the 9x9 sliding window approach, otherwise by the circumscribed rectangle aproach.
Default is False.

Returns numpy array: 3d numpy array with vectors containing the feature values at each
pixel.

main1.dictionaries_to_arrays(features_dictionary, patient_directory, feature_set)
Due to change in design, had to convert all features that are reurned in dictionairies as multi dimensinal
np arrays. for exapmple, a 512x 512 slice with 10 C1 featues is now a 512x512x10 array dictionary entries
are writen in text files which will indicate feature values sequence. According to these files, features can
be retireived later. Each patient folder contains the files that correspond to the calculated features for
the specific patient.

Feature name files also contain a dummy feature which is zero everywhere. This is for initialization and
it does not correspond to an actual feature.

Param dictionary features_dictionary: keys are features names and entries are 2d numpy
arrays that contain the value of the specified feature for each pixel in the image.

Param string patient_directory: directory where feature name files are saved.

Param string feature_set: the set of features (C1, C2, etc) It defines the name of the feature
name files as features_names_C1.txt etc

Returns numpy array: 3d numpy array with vectors containing the feature values at each
pixel.

main1.dump_patient_folders(working_directory, features_switch, sliding_window)
Walk all over the working directory, find files for which features should be calculated and calculate the
selected features for them according to the specified method (sliding window or ROI based.) Moreover, a
progress file is saved in the working directory. This contains all images about which features have already
been calculated. Therefore, if an exception is raised or excecution is halted for any reason, it can reset.
It is also possible to expand in more modalities, as progress file’s images names’ depend on the modality
and the patient ID.

Parameters

• working_directory (string ) – Where all patient directories containing images,
masks and ROIs are saved.

• features_switch (list ) – Which of the features to calculate (from families C1, C2,
C3, C4, C5). Default value is [’f1’, ‘f2’, ‘f3’, ‘f4’, ‘f5’], which calculates all features.

• sliding_window (bool ) – If true, C2 and C5 features are calculated according to
the 9x9 sliding window approach, otherwise by the circumscribed rectangle aproach.
Default is False.
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main1.main2(working_directory, data_root, mask_root, features_switch=[’f1’, ‘f2’, ‘f3’, ‘f4’, ‘f5’],
whole_prostate=True, sliding_window=False)

“Call all dataset preprocessing routines, namely separate_modalities.process_files, change_to_nifti.set_masks_world
and then call dump_patient_folders to calculate all features for all files. Also select whether the whole
prostate in feature estimation is used or just the peripheral zone. :param string working_directory:
Where all patient directories containing images, masks and ROIs are saved. :param string data_root:
root directory of the raw dataset :param string mask_root: root directory of the mask and roi files :param
list features_switch: Which of the features to calculate (from families C1, C2, C3, C4, C5). Default value
is [’f1’, ‘f2’, ‘f3’, ‘f4’, ‘f5’], which calculates all features. It is important to feed the features switch in order

(eg never give f3, f5,f1 but f1, f3, f5)

Parameters

• whole_prostate (bool ) – Whether to use the entire prostate or simply the periph-
eral zone. Default is True (whole prostate).

• sliding_window (bool ) – If true, C2 and C5 features are calculated according to
the 9x9 sliding window approach, otherwise by the circumscribed rectangle aproach.
Default is False.

main1.rescale(img, ratio)
Modified wavelet pyramid scheme to bring an image down to a specific scale. Applies a 2*ratio pixel
kernel Gaussian filter to the image to smooth and avoid aliasing. Then input image is sampled on a grid
defined by ratio. If ratio is not integer and image pixel indices are :math: i in [0,N_x] and :math: j in [0,
N_y] respectively,then a sampling point is i*ratio[0]. The index according to which its value is retrieved is
floor(i*ratio(0)), since the value is constant in the pixel. It is better to use scipy.ndimage.interpolate.zoom
function but this implementation is necessary to run the program.

3d images and 3d ratio as input

Param 3d numpy array img

Param list ratio: ratio[0] corresponds to x sampling ratio, ratio[1] to y sampling ratio and
ratio[2] to z. Since this function is made to subsample MRI images, ratio[0]==ratio[1]

Returns 3d numpy array: downsampled image

main1.write_features_to_files(patient_directory, image_name, rois, mask, features_switch, slid-
ing_window)

Calls calculate_features for each slice trimmed within the volume of interest (thus eliminating pixels both
in z and in x,y directions) and saves a file with the features calculated within the patient directory.
The file is in .npy format and it is a 4d numpy array. Features can retrieved by the feature name
description files that are saved in the same directory.

Parameters

• patient_directory (string ) – where to save the feature files

• image_name – MRI image on which features are calculated. This name is used to
name after the feature file. Thus, if extended to multiparametric MRI, there can be
several feature files in the same directory corresponding to different modality images,
as image name is after the sequence description and the patient ID.

• image file rois (itk ) – itk image file for ROIs on the specific MRI image file (which
means that if MRI image is a DWI and the mask is extracted on a T2 image it will raise
an exception.) 1 refers to a lesion and 0 refers to healthy.

• image file mask (itk ) – itk image file for masks on the specific MRI image file
(which means that if MRI image is a DWI and the mask is extracted on a T2 image
it will raise an exception.) 1 refers to the prostate or peripheral zone of the prostate
volume and 0 refers to healthy.
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• features_switch (list ) – Which of the features to calculate (from families C1, C2,
C3, C4, C5). Default value is [’f1’, ‘f2’, ‘f3’, ‘f4’, ‘f5’], which calculates all features.

• sliding_window (bool ) – If true, C2 and C5 features are calculated according to
the 9x9 sliding window approach, otherwise by the circumscribed rectangle aproach.
Default is False.

INDICES AND TABLES

• genindex

• modindex

• search
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B
PCMM DATASET PREPROCESSING

The PCMM dataset contains MRI scans from 3 hospitals. These are the Erasmus MC, NKI and RadboudUMC.
Moreover, macroslides of the extirpated prostates and the histology of each macroslide are available for the
Erasmus MC cases. The PCMM dataset is developed by a multidisciplinary consortium composed of academic
hospitals to address clinical needs in the field of prostate cancer.

MAPPING THE DATASET

The PCMM dataset contains MRI scans from 3 hospitals. These are the Erasmus MC, NKI and RadboudUMC.
Moreover, macroslides of the extirpated prostates and the histology of each macroslide are available for the
Erasmus MC cases. The PCMM dataset is developed by a multidisciplinary consortium composed of aca-
demic hospitals to address clinical needs in the field of prostate cancer. PCMM dataset primarily consists of
183 folders , each of which concerns a patient that is prostate cancer positive. These folders will from now on
be referred as PCMM patient folders. In each of those folders, there are several subfolders, where each one con-
tains DICOM files of multi-parametric MRI images for the specific patient. The number of the sub-folders in
each PCMM patient folder varies in a wide range, from approximately 7 (folder 01.0001) to 89 (folder S20920).
Moreover, as these folders originate from several different clinics, there is no consistent correspondence be-
tween sub-folders and modalities. This results in a vast directory tree, where manual navigation would be both
exhausting and error prone.

To this end, an automated routine to make a map of the dataset was developed. This routine takes as input
the root directory of the dataset and walks all the way down to the leaves (the DICOM files). Documentation of
this routine can be found in Appendix A (emPROST documentation, function separate_modalities.file_list2).
To this level, DICOM tags are read and the information concerning:

• Patient ID

• Pixel Spacing

• Series Description

is kept for further processing. As these tags are identical in each sub-folder, whenever they are read for a single
DICOM file we go one level up and continue to the following sub-folder. The output is a text file that for each
patient ID contains information about:

• Series Description

• Pixel Spacing

• Directory

A typical entry of this file is presented in Figure 1:
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PC-2961304084
3Plane Loc& 0.7813& C:/PCMM/01.0001/S10/00001
Calibration Scan& 7.5& C:/PCMM/01.0001/S20/00001
Sag T2 FRFSE& 0.4688& C:/PCMM/01.0001/S30/00001
Cor T2 FRFSE& 0.4688& C:/PCMM/01.0001/S50/00001
Ax DWI B=1000& 1.25& C:/PCMM/01.0001/S60/00001
DYN Ax LAVA ARC Freq AP& 1.4063& C:/PCMM/01.0001/S70/00001
Ax T2 FRFSE& 0.4688& C:/PCMM/01.0001/T2/00001

Figure B.1: An entry of the file describing the PCMM dataset structure. First row is the patient ID, whereas first column is the series
description , second column is the pixel spacing and the third one is the storage directory of the file.

SEGMENTATION

Since navigation in the dataset is made possible, we proceeded with segmenting the prostate on each axial
T2 image. Axial T2 images are chosen, as they have the highest resolution compared to all other modalities
and therefore segmentation will be easier and more accurate. Initially, we considered the use of an automated
segmentation approach. There are several approaches that report great results in the PROMISE12 competition
reports. PROMISE12 (Prostate MRI Image Segmentation 2012) is a competition which exactly fits our case. Out
of the top results list [141], VNet by Fausto Milletari [142](“CAMP-TUM2” competition entry) was available on
github. Unfortunately, the available version was not trained. Moreover, the reported accuracy (approximately
85 %) might not have been good enough for us. Therefore, we decided to proceed with manually segmenting
the images.

The tool used to this purpose was SegmentationTool3 by Reinhard Hameeteman in MeVisLab. This is not a
standard MeVisLab module, but it is only available under BIGR applications (EMC/General). This module
works by manually selecting a CSO list on each slice. In the end, the CSO lists are converted to masks of itk
meta image format(.mhd or .mha files). The other option for manual segmentation was ITK-Snap. Segmen-
tationTool3 was however chosen over it for most cases, as it gives the option to save the CSO list which is
editable. In our case, this was necessary as the segmentations were later reviewed by two expert radiologists
(Ivo Schoots and Razvan Miclea), who advised some modifications in what should be considered as prostate
or not. An example of a manually segmented prostate can be seen in figure B.2a, whereas the segmentation of
a peripheral zone for the same prostate can be seen in B.2b.

(a) slice of patient TCIA.aaa0072 with a display of the entire
prostate segmentation

(b) slice of patient TCIA.aaa0072 with a display of the periph-
eral zone segmentation

Unfortunately, we noted that the conversion of CSO files to mhd was prone to a bug that resulted in some
slices of some masks only covering the contours of the prostate and not the entire surface. We could trace this
bug either to the SegmentationTool3 module (whose status mentions “under development”) or to outdated
graphics card driver software of the developing machine. Nevertheless, a python module was developed to
address this issue.

This module recursively retrieves all mask files stored under a root directory, different than the PCMM root di-
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PC-3354827525
AXIAL T2& 0.3906& C:/PCMM/S84/S50/00001

PC-2322493792
T2 TSE ax hi& 0.2734375& C:/PCMM/S8/S5010/00001

Figure B.3: An entry of the file describing axial T2 file locations. For each entry, first row is the patient ID, whereas first column is the series
description , second column is the pixel spacing and the third one is the storage directory of the file.

rectory (which from now on will be referred as mask root directory), iterates through all slices of all masks and
fills all holes of binary images with the standard scipy package function scipy.ndimage.morphology.binary_fill_holes.
Corrected files are subsequently saved in mhd format in a new directory, which will be referred to as the work-
ing directory. In total, 130 axial T2 images were segmented in this way.

AUTOMATIC IMAGE RETRIEVAL

In the file describing the dataset structure, we can see that manual retrieval of the each-time desired modality
can again be tiresome and error-prone. Therefore, a routine was developed to avoid manual file selection. This
routine works by iterating through the lines of the text file described in section B.1 and makes use of regular
expression patterns, to identify if an image Series Description tag matches the specifications of the required
modality. A python dictionary of patterns is hard-coded, where each pattern corresponds to a modality de-
scription. This dictionary can easily be extended or limited, according to the required information or even
to be adjusted to other datasets. A text file similar to the one described in section B.1 is created, containing
information about the location of each matching file. This yields a separate file for each modality. By iterat-
ing over these files, new sub-folders named as the patient IDs are created- if not already present - within the
working directory and the current image is saved in mhd format. The files describing specific modality image
directories look as in Figure 2.

DEFINING THE GROUND TRUTH

In order to proceed with feature evaluation and classification, we need labeling of the data. In literature, man-
ual annotations by one or more radiologists are often mentioned as ground truth labels. Albeit convenient,
this method cannot reveal new underlying information as in this case the golden standard is to achieve the
performance of the potentially best human. This would limit our conclusions in tumors that are only imme-
diately visible with naked eye. However, the radiomics hypothesis dictates that information about a tumor’s
phenotype could also be inferred from various computed features, not directly visible to the human eyes.

Therefore, we chose to use histology as our ground truth. Unfortunately, histological results were only available
for the part of the PCMM dataset coming from Erasmus MC. The available histological slices had manually
drawn tumor contours, with the corresponding Gleason Score (GS) annotations. From previous work, those
slices were manually stitched together and the contours from the stitched slices were manually drawn anew
on extracted prostate macro slices. This resulted in images like Figure 3:

From those images, from now on referred to as “annotated macros”, the following workflow was followed in
order to register those to the MRI images:

1. Crop and save each slice shown in the annotated macros in a separate jpeg file with ImageJ.

2. Stack all those slices and save in a mhd file. For this task, a MeVisLab network was used. This network,
undertakes the following tasks:

(a) As lesions are annotated with red marker, keep only the blue color channel for each of the anno-
tated macro slices.

(b) Repeat one slice twice to compensate in volume for the missing frozen slice.

(c) Stack all slices along the z axis.

(d) Do a manual rigid registration for each of the slices, based on the central slice.

(e) Save this stack as a single mhd file, from now on referred to as the macro stack.
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Figure B.4: Tumor contours manually drawn on extracted prostate macros.

3. Manually segment the prostate region and the lesion contours on the macro stack. Those segmentations
are saved in files referred to as the macro masks.

4. Do a manual affine registration (pre-registration) of the macro masks on the axial T2 masks extracted
from the procedure described in section B.2. This step brings the macro masks to the same scale as the
T2 masks and gives a good initial alignment, that is essential for the next step.

5. Do an automatic BSpline registration with Elastix of the pre-registered macro masks on the axial T2
masks. A registration of the macro masks was chosen over a registration of the macro stacks themselves
on the axial T2 images, as

• It is easier and faster for Elastix to give good results on binary, rather than gray scale images.

• Histogram matching and equalization between fixed and moving images would be needed if we
went for the original images. Still, the results would be uncertain.

• A perfect correspondence between regions representing the prostate can be guaranteed. This means
that all labeled regions will be inside the region about which features will be subsequently ex-
tracted.

• During registration, annotated regions of interest are expected to undergo the smallest possible
distortion, giving us the best we can do for a good correspondence between tumorous and healthy
regions.

6. Finally, salt and pepper noise is sometimes observed around the registered regions of interest. This is
removed in post processing with a dedicated python function that applies binary erosion and dilation
for small connected components, so that true regions of interest stay unaffected.



C
FEATURE SIGNIFICANCE RANGES

Bellow, the feature significance ranges as computed throughout all relevant experiments through the Random
Forest intrinsic feature evaluation are presented. First, the values for a semi-automatic ROI based approach
are shown and the sliding window approach estimated values follow.

ROI BASED ESTIMATED VALUES
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SLIDING WINDOW ESTIMATED VALUES
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