Scalable Positioning Method for MAV Localisation using Two onboard UWB Tags
More Info
expand_more
Abstract
Abstract—Ultra-wideband (UWB) ranging is a very suitable method for indoor localisation of unmanned aerial vehicles (UAVs). Current solutions of UWB ranging however either focus on achieving a high accuracy or focus on scalability. In this research a positioning algorithm for UAVs is presented that combines high accuracy performance with a high level of system scalability. The localisation method uses commercially available off the shelf components and is implemented by connecting two UWB sensors to a micro aerial vehicle. From
both sensors, time-difference of arrival (TDOA) measurements were collected during flights and additionally, a tag-TDOA between the two UWB sensors was measured which estimates the angle-of-arrival of the incoming signals. It was found that state estimation using TDOA measurements from both UWB sensors has a reduced positioning error compared to the algorithm using TDOA measurements from one UWB sensor, without significantly affecting yaw estimation accuracy. Furthermore, the tag-TDOA measurement did not improve the estimation accuracy at the implemented baseline of 0.22 metres as the
measurement error was too large compared to the baseline.