Probing the solution space of an EM inversion problem with a genetic algorithm

More Info
expand_more

Abstract

In an inversion for the subsurface conductivity distribution using frequency-domain Controlled-Source Electromagnetic data, various amounts of horizontal components may be included. We investigate which combination of components are best suited to invert for a vertical transverse isotropic (VTI) subsurface. We do this by probing the solutionspace using a genetic algorithm. We found, by studying a simple horizontally layered medium, that if only electric data are used, either the horizontal or the vertical conductivity of a layer can be estimated properly, but not both. Including the crossline electric field does not add additional information. In contrast, including the two horizontal magnetic components along with the two horizontal electric components allows to retrieve a better estimate of some of the VTI parameters. For an isotropic subsurface, the electric field is sufficient to invert for the subsurface conductivity.

Files