An artificial peninsula at Ter Heijde is designed to feed the coast with sediment. Scientists are investigating whether this kind of sand engine could be the Netherlands’ answer to rising sea levels.

Tomas van Dijk

At the foot of the dunes in the coastal resort of Ter Heijde, Matthieu de Schipper and Sierd de Vries carefully cross the sand in their four-wheel drive vehicle. The dunes here have recently been reinforced. Neat lines of beach grass protrude from the sand at intervals of some 30 cm. “Pretty different to what you get with the sand engine,” says De Schipper. Through the other window he points to where we are heading: a massive hook-shaped expanse of sand extending 1 km out to sea. “The waves, sea current and wind are creating all kinds of gullies and bays around the sand engine. It’s wonderful to let nature do her work.”

“Building with nature” has now become the watchword for hydraulic engineering. It’s also the theme of the PhD research that De Schipper and his colleague, De Vries, are working on. The two researchers from the faculty of Civil Engineering and Geosciences (CEG) are regular visitors to this peninsula. “We come to count the grains of sand,” De Schipper jokes.

This sand engine provides the hydraulic engineers with a superb testing ground. Last year, dredging companies Van Oord and Boskalis used trailer suction hopper dredgers to deposit 21.5 million cubic metres of sand here. In the coming years, the sand will be carried by currents and waves in a primarily northerly direction, compensating for the loss of sand along the coast up to Scheveningen. Some of the sand will be blown into the dunes, reinforcing the coastline. Using GPS equipment on board the vehicle, the researchers measure the sand engine’s movements on a monthly basis. A staff member from the Delft spin-off company Shore Monitoring also uses a jet ski equipped with sonar technology to investigate the soil morphology up to the edge of the coastline. The researchers share their findings with Deltares and Imarres Wageningen UR. These two research institutes have been commissioned by the Directorate-General for Public Works and Water Management (Rijkswaterstaat or RWS) to closely monitor the sand engine and the currents and ecology around it over the next ten years.

The peninsula will gradually disappear. Just a few months after its completion, there are already signs of changes. Sand deposits have increased the size of the bay, a kind of lagoon on the inside of the hook. Already an ideal site for kite surfing, it will eventually form a suitable habitat for rare plants, such as salicornia and searocket. The sand engine will gradually transform into something completely different – most likely a system of sandbanks.

“Experiment”

“It’s part of a major experiment that RWS is conducting into alternative methods of sand replenishment,” says De Vries. Since 1990, RWS has been commissioning the annual replenishment of 12 million cubic metres of sand along the whole of the Dutch coast, alongside the beach, on the beach itself or in the dunes. The aim is to counteract coastal erosion – or to quell the coast’s hunger for sand, in a manner of speaking. Before the project started, the Netherlands had been gradually eroding for centuries, a result of rising sea levels and soil subsidence.

“The problem is that these sand replenishments from deeper parts of the North Sea are expensive and disrupt the marine ecology,” continues De Vries. “We’re using the sand engine to see if it’s possible to use a single large-scale replenishment in one location in order to protect an entire section of the coastline over a much longer period.”

A preliminary study conducted by Deltares suggests that the sand engine will have been completely reabsorbed into its surroundings in about 20 years’ time. At a cost of € 50 million, the sand engine works out to be much cheaper than the series of smaller replenishments that would have been necessary over that same period.

According to hydraulic engineer, Professor Marcel Stive (CEG), who played a major role in the realisation of the sand engine, the project offers valuable prospects for research. He believes there will need to be a significant increase in sand replenishment in the coming years, making it extremely important to gain experience of new, larger-scale techniques.
The sand engine will have been completely reabsorbed into its surroundings in fine sand that possibility. (‘Nature always lends a hand’, page 16) Prof. Stive explores there may even soon be a series of sand engines along order to stifle the Dutch coast’s hunger for sand. A proactive member, recommended that the annual volume of sand that he has such doubts about the use of sand engines. Waterman would prefer to recreate a 17th century coastline (‘by way of approximation’). For Zuid-Holland, this would be a hollow curved coastline running from the northern breakwater of Hook of Holland to the extended southern breakwater of Scheveningen. In terms of land reclamation in Zuid-Holland, we aim to achieve a flexible, dynamic, hollow coastline that is in balance,” says Waterman. “In a long run, sand engines will achieve that, but it’s not what they’re designed for. They do not have the ideal shape for that purpose.” Together with Czech engineer Honza Travaile, Waterman pioneered the principle of ‘Building with Nature’. The fact that he is now being subjected to a thorough sandblasting. Barely audible in the howling wind, De Vries draws the others’ attention to a boat full of ecologists about 100 metres out from the beach. “We’re working on this project with a lot of different disciplines,” says De Vries. “That’s the great thing about it.”

Indeed, in a report dating from 1980, he already mentioned the need to extend the coastal strip. In his plans, dams and dikes largely make way for beaches and dunes. Waterman has had a hand in a whole series of coastal extensions between the Schermerhorn and Maastricht 2 in the south and Seaport Marina IJmuiden in the north. A family of coastal extensions that have all resulted in a boost for nature, according to Waterman. Waterman does admit that the sand engine is an “interesting member of the family. It’s interesting, because as well as increasing safety and boosting nature and recreation, it also offers numerous possibilities for research. And it could be put in place relatively cheaply because the trailer suction hopper dredgers were already in the area, working on Maastricht 2. It’s for those reasons that I gave it my support. But in certain cases, I’d prefer to deposit the sand directly where it’s needed, for example if port extensions are required.” In Waterman’s view, if 85 million cubic metres of sand need to be replenished every year, this does not necessarily call for a whole series of sand engines along the coastline. Ecologist Dr Martin Baptist, from Imares, does believe this would be a good idea. If the volume of sand replenishment required in the future increases significantly, sand engines will need to be used, or else it will prove disastrous for marine life, he argues.

Marine animals Although a sand engine has a major effect locally, the advantage is that it leaves the natural world in the wider environment undisturbed for 20 years,” Baptist says. “On the other hand, you regularly replenish sand at numerous points along the coast, marine life doesn’t have time to recover. It takes between four to six years for the soil community to recover in places where sand is disrupted. “Another disadvantage of sand replenishment done in the traditional way is that it makes the coast steeper. This reduces the habitat for marine life in shallow waters.” Baptist is leading Imares’ research into the marine ecology around the sand engine. At late 2011 his institute took more than 200 samples of sand from around the peninsula. The marine life taken from these samples (including countless worms, shellfish and crustaceans) is being preserved and will be counted over the course of this year. This process will then be repeated annually. The key question is whether the animals can cope with the flow of sand originating from the sand engine. “As long as they’re not covered by too much sand, they can still crawl up to the surface,” Baptist explains. “If the sand moves as the models predict, it shouldn’t be a problem.” There is another reason for Baptist’s enthusiasm for sand engines: “Possibly these will serve as nurseries for flatfish. The lagoons are particularly interesting in this respect. We’re researching the ideal conditions for flatfish fry, such as the sediment content, depth, and grain size of the sand, and how we can shape the sand engines to create these conditions.” On the sand engine, the small expedition from TU Delft is now being subjected to a thorough sandblasting. Barely audible in the howling wind, De Vries draws the others’ attention to a boat full of ecologists about 100 metres out from the beach. “We’re working on this project with a lot of different disciplines,” says De Vries. “That’s the great thing about it.”

Not ideal Of course, the researchers will also need to monitor how much sand is actually distributed along the coast. They calculate that around 10 to 20 percent will flow away to greater depths. This is why the renowned hydraulic engineer, De Ronald Waterman, a former Liberal member of the Provincial Council of Zuid-Holland and a TU Delft alumnus, has his doubts about the use of sand engines. Waterman preferred to recreate a 17th century coastline (‘by way of approximation’). For Zuid-Holland, this would be a hollow curved coastline running from the northern breakwater of Hook of Holland to the extended southern breakwater of Scheveningen. In terms of land reclamation in Zuid-Holland, we aim to achieve a flexible, dynamic, hollow coastline that is in balance,” says Waterman. “In a long run, sand engines will achieve that, but it’s not what they’re designed for. They do not have the ideal shape for that purpose.” Together with Czech engineer Honza Travaile, Waterman pioneered the principle of ‘Building with Nature’. The fact that he has such doubts about the use of sand engines may therefore come as a surprise.

There may even soon be a series of sand engines along order to stifle the Dutch coast’s hunger for sand. A proactive member, recommended that the annual volume of sand that possibility. (‘Nature always lends a hand’, page 16) Prof. Stive explores there may even soon be a series of sand engines along order to stifle the Dutch coast’s hunger for sand. A proactive member, recommended that the annual volume of sand that possibility.