Searched for: +
(1 - 3 of 3)
document
Pál, Botond (author), Roekaerts, D.J.E.M. (author), Zandbergen, B.T.C. (author)
This study investigates the potential of a newly released multi-phase solver to simulate atomisation in an air-blast type atomiser. The 'VOF-to-DPM' solver was used to simulate primary and secondary atomisation in an atomiser with a coaxial injector-like geometry. The solver uses a hybrid Eulerian/Eulerian-Lagrangian formulation with...
journal article 2021
document
Romero-Anton, Naiara (author), Huang, X. (author), Bao, Hesheng (author), Martin-Eskudero, Koldo (author), Salazar-Herran, Erik (author), Roekaerts, D.J.E.M. (author)
Flameless combustion, also called MILD combustion (Moderate or Intense Low Oxygen Dilution), is a technology that reduces NO<sub>x</sub> emissions and improves combustion efficiency. Appropriate turbulence-chemistry interaction models are needed to address this combustion regime via computational modelling. Following a similar analysis to...
journal article 2020
document
Merci, B. (author), Naud, B. (author), Roekaerts, D. (author), Maas, U. (author)
Two transported PDF strategies, joint velocity-scalar PDF (JVSPDF) and joint scalar PDF (JSPDF), are investigated for bluff-body stabilized jet-type turbulent diffusion flames with a variable degree of turbulence–chemistry interaction. Chemistry is modeled by means of the novel reaction-diffusion manifold (REDIM) technique. A detailed chemistry...
journal article 2008