Searched for: +
(1 - 4 of 4)
document
Lantsoght, E.O.L. (author), Yang, Y. (author), van der Veen, C. (author)
Load testing and in some cases failure (or collapse) testing of bridges is a method to learn more about the behaviour of full-scale bridges in site conditions. Since such experiments, especially failure tests, are expensive, an extensive preparation of these tests is important. This paper addresses the question of when a bridge is a good...
journal article 2022
document
Zhang, F. (author), Zarate Garnica, G.I. (author), Yang, Y. (author), Lantsoght, E.O.L. (author), Sliedrecht, Henk (author)
In the Netherlands, many prestressed concrete bridge girders are found to have insufficient shear–tension capacity. We tested four girders taken from a demolished bridge and instrumented these with traditional displacement sensors and acoustic emission (AE) sensors, and used cameras for digital image correlation (DIC). The results show that AE...
journal article 2020
document
Abad, Belkis Filian (author), Lantsoght, E.O.L. (author), Yang, Y. (author)
The Critical Shear Displacement Theory (CSDT) was developed to determine the shear capacity of reinforced concrete beams based on the different shear-carrying mechanisms (concrete in the compression zone, aggregate interlock, and dowel action). This research aims at extending the CSDT to Steel Fibre Reinforced Concrete (SFRC) by adding the...
conference paper 2019
document
Lukovic, M. (author), Yang, Y. (author), Schlangen, E. (author), Hordijk, D.A. (author)
Different analytical models exist to predict the shear strength of reinforced concrete members. Generally, each of these shear strength models consists of a formulation based on certain underlying theory and fitted model coefficients. The model fitting parameters are usually established from the comparison with test data. Hence, the predictive...
conference paper 2018
Searched for: +
(1 - 4 of 4)