Searched for: +
(1 - 19 of 19)
document
Lu, T. (author), Liang, X. (author), Liu, C. (author), Chen, Y. (author), Li, Z. (author)
This study experimentally investigated the effects of surfactants and water-repelling agents on the hydration process, relative humidity, and mechanical properties of Portland cement pastes. Based on the measurement results, the degree of hydration, degree of saturation, capillary tension of autogenous shrinkage, and magnitude of autogenous...
journal article 2023
document
Liang, M. (author), He, S. (author), Gan, Yidong (author), Zhang, Hongzhi (author), Chang, Z. (author), Schlangen, E. (author), Šavija, B. (author)
This paper employs computer vision techniques to predict the micromechanical properties (i.e., elastic modulus and hardness) of cement paste based on an input of Backscattered Electron (BSE) images. A dataset comprising 40,000 nanoindentation tests and 40,000 BSE micrographs was built by express nanoindentation test and Scanning Electron...
journal article 2023
document
Xu, Yaowen (author), Liang, X. (author), Wan, Chaojun (author), Yang, Hongyu (author), Feng, Xiaming (author)
This paper develops a kind of molded disc samples to investigate the carbonation and related behaviors of hardened cement pastes under different previous hydration degrees. Weight and length changes of cement pastes over time are monitored during a multistep process including carbonation, drying, rewetting, and redrying. The combination of X...
journal article 2023
document
Liang, M. (author), Gan, Y. (author), Chang, Z. (author), Wan, Z. (author), Schlangen, E. (author), Šavija, B. (author)
This study aims to provide an efficient alternative for predicting creep modulus of cement paste based on Deep Convolutional Neural Network (DCNN). First, a microscale lattice model for short-term creep is adopted to build a database that contains 18,920 samples. Then, 3 DCNNs with different consecutive convolutional layers are built to learn...
journal article 2022
document
Gan, Y. (author), Vandamme, Matthieu (author), Chen, Y. (author), Schlangen, E. (author), van Breugel, K. (author), Šavija, B. (author)
This paper presents an experimental investigation on the short-term creep recovery of cement paste at micrometre length scale. Micro-cantilever beams were fabricated and tested with 8 different loading series using the nanoindenter. It is found that cement pastes show high recovery ratios (>80%) even subjected to very high stress levels....
journal article 2021
document
Gan, Y. (author), Zhang, Hongzhi (author), Liang, M. (author), Schlangen, E. (author), van Breugel, K. (author), Šavija, B. (author)
In this study, a numerical model using a 2D lattice network is developed to investigate the fatigue behaviour of cement paste at the microscale. Images of 2D microstructures of cement pastes obtained from XCT tests are used as inputs and mapped to the lattice model. Different local mechanical and fatigue properties are assigned to different...
journal article 2021
document
Gan, Y. (author), Zhang, Hongzhi (author), Zhang, Y. (author), Xu, Y. (author), Schlangen, E. (author), van Breugel, K. (author), Šavija, B. (author)
This study presents an experimental investigation of fatigue properties of cement paste at the microscale. A strong size dependence is found for the flexural fatigue life of the cement paste specimen. Microscopic observations on the fractured surfaces suggest that there is a higher density of nano-scale cracks generated during the fatigue...
journal article 2021
document
Gan, Y. (author), Romero Rodriguez, C. (author), Schlangen, E. (author), van Breugel, K. (author), Šavija, B. (author)
This study presents an experimental investigation of the rate-dependent mechanical properties of cement paste at the microscale. With the use of a nanoindenter, micro-cantilever beams with the size of 300 μm × 300 μm × 1650 μm were loaded at five different strain rates from around 10<sup>−6</sup>/s to 10<sup>−2</sup>/s until failure. It is...
journal article 2021
document
Tavakoli, D. (author), Gao, P. (author), Tarighat, Amir (author), Ye, G. (author)
In this study, first of all, the atomistic structure of cement hydration products is estimated via molecular dynamics method and their elastic properties are extracted. Then, cement hydration simulation is done by HYMOSTRUC3D model and the obtained results from both molecular dynamics and HYMOSTRUC3D methods are used for simulation in macro...
journal article 2020
document
Gan, Y. (author), Vandamme, Matthieu (author), Zhang, Hongzhi (author), Chen, Y. (author), Schlangen, E. (author), van Breugel, K. (author), Šavija, B. (author)
This study proposes an experimental method for studying the short-term creep behaviour of cement paste at micro-scale. The micro-bending tests on miniaturized cantilever beams were used to characterize the viscoelastic properties of cement paste. The effects of w/b ratio, the type of binder and the stress level on the microscopic creep...
journal article 2020
document
Lu, T. (author), Li, Z. (author), Huang, H. (author)
In recent years more and more attention has been given to autogenous shrinkage due to the increasing use of high-performance concrete, which always contains supplementary materials. With the addition of supplementary materials-e.g., fly ash and blast furnace slag-internal relative humidity, chemical shrinkage and mechanical properties of...
journal article 2020
document
Wang, Liquan (author), Liu, Ziyang (author), Xu, Shida (author), Ouyang, Xiaowei (author), Ouyang, Dong (author), Jiao, Chujie (author), Zhang, Y. (author)
The production of cement leads to a large amount of CO<sub>2</sub> emission. Using industrial waste slag, such as ceramic polishing powder (PP), to replace part of Portland cement can reduce the pollution caused by the cement industry and solid waste disposal. In order to use PP as a replacement for cement, its effects on the properties of...
journal article 2019
document
Šavija, B. (author), Zhang, H. (author), Schlangen, E. (author)
Properties of concrete are, to a large extent, dependent on the properties of its binding constituent, hydrated cement paste. Therefore, knowledge of properties of hydrated cement paste is crucial for predicting concrete behavior. This paper presents an experimentally informed approach for modeling elastic and transport properties of cement...
journal article 2019
document
Zhang, H. (author), Šavija, B. (author), Schlangen, E. (author)
This work presents a study of stochastic fracture properties of cement paste at the micro length scale based on a combination of X-ray computed tomography (XCT) technique and discrete lattice type fracture model. Thirty virtual specimens consisting of pore, outer hydration products, inner hydration products and anhydrous cement particles were...
journal article 2018
document
Zhang, H. (author), Šavija, B. (author), Schlangen, E. (author)
The aim of this paper is to investigate the fracture performance of cement paste at micro scale by both experimental and numerical methods. Micro cubic specimens with length of 100 µm were fabricated by precision cutting, grinding and micro-dicing, and tested by splitting with a wedge tip mounted on a nano-indenter. A nominal splitting...
journal article 2018
document
Šavija, B. (author), Zhang, H. (author), Schlangen, E. (author)
Excessive cracking can be a serious durability problem for reinforced concrete structures. In recent years, addition of microencapsulated phase change materials (PCMs) to concrete has been proposed as a possible solution to crack formation related to temperature gradients. However, the addition of PCM microcapsules to cementitious materials...
journal article 2017
document
Qian, Zhiwei (author), Schlangen, E. (author), Ye, G. (author), van Breugel, K. (author)
Multiscale modeling for cement-based materials, such as concrete, is a relatively young subject, but there are already a number of different approaches to study different aspects of these classical materials. In this paper, the parameter-passing multiscale modeling scheme is established and applied to address the multiscale modeling problem...
journal article 2017
document
Dong, H. (author), Gao, P. (author), Ye, G. (author)
More and more studies are based on digital microstructures of cement pastes obtained either by numerical modelling or by experiments. A comprehensive understanding of the their pore structures, therefore, becomes significant. In this study, the pore structure of a virtual cement paste (HYMO-1d) generated by cement hydration model HYMOSTRUC 3D...
journal article 2017
document
Huang, H. (author), Ye, G. (author), Pel, Leo (author)
The aim of this study is to investigate the effect of water migration from cracks into the bulk paste on autogenous self-healing. Nuclear magnetic resonance (NMR) technique was utilized to monitor water migration from cracks into the bulk paste during the process of autogenous self-healing. NMR results show that initially the water in the...
journal article 2016
Searched for: +
(1 - 19 of 19)