Searched for: +
(1 - 3 of 3)
document
Van Loenhout, M.T.J. (author), Van der Heijden, T. (author), Kanaar, R. (author), Wyman, C. (author), Dekker, C. (author)
RecA, the key protein in homologous recombination, performs its actions as a helical filament on single-stranded DNA (ssDNA). ATP hydrolysis makes the RecA–ssDNA filament dynamic and is essential for successful recombination. RecA has been studied extensively by single-molecule techniques on double-stranded DNA (dsDNA). Here we directly probe...
journal article 2009
document
De Vlaminck, I. (author), Vidic, I. (author), Van Loenhout, M.T.J. (author), Kanaar, R. (author), Lebbink, J.H.G. (author), Dekker, C. (author)
All cellular single-stranded (ss) DNA is rapidly bound and stabilized by single stranded DNA-binding proteins (SSBs). Replication protein A, the main eukaryotic SSB, is able to unwind double-stranded (ds) DNA by binding and stabilizing transiently forming bubbles of ssDNA. Here, we study the dynamics of human RPA (hRPA) activity on topologically...
journal article 2010
document
Holthausen, J.T. (author), Van Loenhout, M.T.J. (author), Sanchez, H. (author), Ristic, D. (author), Van Rossum-Fikkert, S.E. (author), Modesti, M. (author), Dekker, C. (author), Kanaar, R. (author), Wyman, C. (author)
Homologous recombination is essential for the preservation of genome stability, thereby preventing cancer. The recombination protein RAD51 drives DNA strand exchange, which requires the assembly, rearrangement and disassembly of a RAD51 filament on DNA, coupled to ATP binding and hydrolysis. This process is facilitated and controlled by...
journal article 2011