Searched for: +
(1 - 3 of 3)
document
Han, C. (author), Mazzarella, L. (author), Zhao, Y. (author), Yang, G. (author), Procel Moya, P.A. (author), Tijssen, M. (author), Bento Montes, A.R. (author), Isabella, O. (author), Zeman, M. (author)
Broadband transparent conductive oxide layers with high electron mobility (μ<sub>e</sub>) are essential to further enhance crystalline silicon (c-Si) solar cell performances. Although metallic cation-doped In<sub>2</sub>O<sub>3</sub> thin films with high μ<sub>e</sub> (&gt;60 cm<sup>2</sup> V<sup>-1</sup> s<sup>-1</sup>) have been extensively...
journal article 2019
document
Han, C. (author), Yang, G. (author), Montes, Ana (author), Procel Moya, P.A. (author), Mazzarella, L. (author), Zhao, Y. (author), Eijt, S.W.H. (author), Schut, H. (author), Zhang, Xiaodan (author), Zeman, M. (author), Isabella, O. (author)
In high-efficiency silicon solar cells featuring carrier-selective passivating contacts based on ultrathin SiOx/poly-Si, the appropriate implementation of transparent conductive oxide (TCO) layers is of vital importance. Considerable deterioration in passivation quality occurs for thin poly-Si-based devices owing to the sputtering damage...
journal article 2020
document
Han, C. (author), Santbergen, R. (author), van Duffelen, Max (author), Procel Moya, P.A. (author), Zhao, Y. (author), Yang, G. (author), Zhang, Xiaodan (author), Zeman, M. (author), Mazzarella, L. (author), Isabella, O. (author)
Reducing indium consumption, which is related to the transparent conductive oxide (TCO) use, is a key challenge for scaling up silicon heterojunction (SHJ) solar cell technology to terawatt level. In this work, we developed bifacial SHJ solar cells with reduced TCO thickness. We present three types of In<sub>2</sub>O<sub>3</sub>-based TCOs,...
journal article 2022