Searched for: +
(1 - 2 of 2)
document
Patra, B (author), van Dijk, J.P.G. (author), Corna, A. (author), Xue, X. (author), Samkharadze, Nodar (author), Sammak, A. (author), Scappucci, G. (author), Veldhorst, M. (author), Vandersypen, L.M.K. (author), Babaie, M. (author), Sebastiano, F. (author), Charbon-Iwasaki-Charbon, E. (author)
Quantum computers (QC), comprising qubits and a classical controller, can provide exponential speed-up in solving certain problems. Among solid-state qubits, transmons and spin-qubits are the most promising, operating « 1K. A qubit can be implemented in a physical system with two distinct energy levels representing the |0) and |1) states, e.g...
conference paper 2020
document
Xue, X. (author), Patra, B (author), van Dijk, J.P.G. (author), Samkharadze, Nodar (author), Corna, A. (author), Paquelet Wuetz, B. (author), Sammak, A. (author), Scappucci, G. (author), Veldhorst, M. (author), Sebastiano, F. (author), Babaie, M. (author), Charbon-Iwasaki-Charbon, E. (author), Vandersypen, L.M.K. (author)
The most promising quantum algorithms require quantum processors that host millions of quantum bits when targeting practical applications<sup>1</sup>. A key challenge towards large-scale quantum computation is the interconnect complexity. In current solid-state qubit implementations, an important interconnect bottleneck appears between the...
journal article 2021