Searched for: %2520
(1 - 11 of 11)
document
Qiu, Xiujiao (author), Chang, Z. (author), Chen, J. (author), Schlangen, E. (author), Ye, G. (author), Schutter, Geert De (author)
In our former paper, based on a published 3D reactive transport model at microscale with the capability of simulating the chemical reactions involved in ASR, the location of expansive ASR gel related to the reactivity of aggregate, temperature, aggregate porosity and silica content in aggregate, is clarified. Based on the simulation results,...
journal article 2023
document
Gao, Peng (author), Ye, G. (author), Huang, Haoliang (author), Qian, Zhiwei (author), Schlangen, E. (author), Wei, Jiangxiong (author), Yu, Qijun (author)
A structure-based modelling framework was established to simulate the three-dimensional autogenous shrinkage of cement paste. A cement hydration model, HYMOSTRUC3D-E, was used to obtain the microstructures and ionic concentrations of the cement paste. A lattice fracture model based on the effective stress and effective modulus was used to...
journal article 2022
document
Sherzer, G. Lifshitz (author), Ye, G. (author), Schlangen, E. (author), Kovler, K. (author)
It has been observed that a trench wall embedded in the soil of the Dead Sea has lost strength and is deteriorating due to brine attack. This phenomenon demonstrates that concrete wall structural stability and durability can be seriously endangered. Yet conventional analysis using macroscopic models is considered an oversimplification, as it...
journal article 2022
document
Lifshitz Sherzer, G. (author), Schlangen, E. (author), Ye, G. (author), Gal, A. E. (author)
We propose an upscaled methodology for evaluating the compressive parameters of the Lattice Discrete Particle Model (LDPM) for a multiscale analysis of concrete structures. This methodology is based on mechanical and chemical models on a wide range of concrete scales. We show that the compressive mechanical parameters are related mainly to...
journal article 2020
document
Mazaheripour, Hadi (author), Faria, Rui (author), Ye, G. (author), Schlangen, E. (author), Granja, José (author), Azenha, Miguel (author)
The development of the elastic properties of a hardening cement paste results from the microstructural evolution due to cement hydration. The elastic behaviour of cement paste can be predicted by a combination of the hydration model and micromechanical analysis, which originates from a microstructural representative volume where the elastic...
journal article 2018
document
Qian, Zhiwei (author), Schlangen, E. (author), Ye, G. (author), van Breugel, K. (author)
Multiscale modeling for cement-based materials, such as concrete, is a relatively young subject, but there are already a number of different approaches to study different aspects of these classical materials. In this paper, the parameter-passing multiscale modeling scheme is established and applied to address the multiscale modeling problem...
journal article 2017
document
Sherzer, G. (author), Gao, P. (author), Schlangen, E. (author), Ye, G. (author), Gal, E. (author)
Modeling the complex behavior of concrete for a specific mixture is a challenging task, as it requires bridging the cement scale and the concrete scale. We describe a multiscale analysis procedure for the modeling of concrete structures, in which material properties at the macro scale are evaluated based on lower scales. Concrete may be viewed...
journal article 2017
document
Lukovic, M. (author), Ye, G. (author), Schlangen, E. (author), van Breugel, K. (author)
In concrete repair systems, material properties in the repair material and interface are greatly influenced by the initial moisture content of the concrete (or mortar) substrate. In order to quantify moisture profiles inside the repair system, X-ray absorption was used. Preliminary studies are performed first to determine the absorption rate of...
journal article 2017
document
Lukovic, M. (author), Šavija, B. (author), Ye, G. (author), Schlangen, E. (author), van Breugel, K. (author)
Corrosion of steel reinforcement is the main cause of deterioration in reinforced concrete structures. It can result in cracking and spalling of the concrete cover. After the damaged cover is repaired, reinforcement corrosion might continue and even accelerate. While the development of the corrosion cell is difficult to control, the damage can...
journal article 2017
document
Lukovic, M. (author), Šavija, B. (author), Schlangen, E. (author), Ye, G. (author), van Breugel, K. (author)
Differential shrinkage between repair material and concrete substrate is considered to be the main cause of premature failure of repair systems. The magnitude of induced stresses depends on many factors, for example the degree of restraint, moisture gradients caused by curing and drying conditions, type of repair material, etc. Numerical...
journal article 2016
document
Lukovic, M. (author), Savija, B. (author), Dong, H. (author), Schlangen, E. (author), Ye, G. (author)
journal article 2014
Searched for: %2520
(1 - 11 of 11)