Searched for: author%3A%22Schlangen%2C+E.%22
(1 - 8 of 8)
document
Awasthy, Nikhil (author), Schlangen, E. (author), Hordijk, Dick (author), Šavija, B. (author), Lukovic, M. (author)
Concrete is characterized in terms of its engineering properties, mainly strength and stiffness, which are subsequently used in structural design. However, the apparent (i.e., measured) concrete properties are not intrinsic but dependent on the conditions under which the measurement is performed. Herein a combined experimental and numerical...
journal article 2023
document
Nedeljković, Marija (author), Tošić, Nikola (author), Holthuizen, Patrick (author), França de Mendonça Filho, F. (author), Copuroglu, Oguzhan (author), Schlangen, E. (author), Fennis, Sonja (author)
The utilization of locally available concrete waste for producing recycled concrete aggregates is recognized as one of the most sustainable ways of satisfying the growing demand for concrete production. However, the quality of concrete waste depends on its origin and it may significantly differ from one concrete structure to another. Knowing the...
journal article 2023
document
Liang, M. (author), Schlangen, E. (author), Šavija, B. (author)
Stress evolution of restrained concrete is directly related to early-age cracking (EAC) potential of concrete, which is a tricky problem that often happens in engineering practice. Due to the global objective of carbon reduction, Ground granulated blast furnace slag (GGBFS) concrete has become a more promising binder comparing with Ordinary...
book chapter 2023
document
Liang, M. (author), Li, Z. (author), He, S. (author), Chang, Z. (author), Gan, Y. (author), Schlangen, E. (author), Šavija, B. (author)
Stress evolution of restrained concrete is a significant direct index in early-age cracking (EAC) analysis of concrete. This study presents experiments and numerical modelling of the early-age stress evolution of Ground granulated blast furnace slag (GGBFS) concrete, considering the development of autogenous deformation and creep. Temperature...
journal article 2022
document
Liang, M. (author), Chang, Z. (author), Wan, Z. (author), Gan, Y. (author), Schlangen, E. (author), Šavija, B. (author)
This study aims to provide an efficient and accurate machine learning (ML) approach for predicting the creep behavior of concrete. Three ensemble machine learning (EML) models are selected in this study: Random Forest (RF), Extreme Gradient Boosting Machine (XGBoost) and Light Gradient Boosting Machine (LGBM). Firstly, the creep data in...
journal article 2022
document
Schlangen, E. (author), Liang, M. (author), Šavija, B. (author)
The study aims to investigate the mechanism of early-age cracks in different massive concrete structures (i.e. tunnels, bridge foundations and underground parking garages), with the objective of answering the following three specific questions: <br/><br/>1) How does the parameters of concrete proportion mix (e.g. w/c ratio, cementitious...
book chapter 2022
document
Chang, Z. (author), Zhang, Hongzhi (author), Schlangen, E. (author), Šavija, B. (author)
The lattice fracture model is a discrete model that can simulate the fracture process of cementitious materials. In this work, the Delft lattice fracture model is reviewed and utilized for fracture analysis. First, a systematic calibration procedure that relies on the combination of two uniaxial tensile tests is proposed to determine the input...
journal article 2020
document
Qian, Zhiwei (author), Schlangen, E. (author), Ye, G. (author), van Breugel, K. (author)
Multiscale modeling for cement-based materials, such as concrete, is a relatively young subject, but there are already a number of different approaches to study different aspects of these classical materials. In this paper, the parameter-passing multiscale modeling scheme is established and applied to address the multiscale modeling problem...
journal article 2017
Searched for: author%3A%22Schlangen%2C+E.%22
(1 - 8 of 8)