Searched for: author%3A%22Turteltaub%2C+S.R.%22
(1 - 4 of 4)
document
Turteltaub, S.R. (author), de Jong, Gijs (author)
A multiscale fracture model is developed to study the influence of defects appearing at a microscale in a fiber-reinforced composite laminate. The model establishes a link between the geometrical characteristics of sub-ply imperfections that may be created during manufacturing and the overall fracture strength and fracture energy of the...
journal article 2019
document
Krishnasamy, J. (author), Ponnusami, Sathiskumar A. (author), Turteltaub, S.R. (author), van der Zwaag, S. (author)
The influence of microstructural pore defects on fracture behaviour of Thermal Barrier Coatings (TBC) is analysed using finite element analysis involving cohesive elements. A concurrent multiscale approach is utilised whereby the microstructural features of the TBC are explicitly resolved within a unit cell embedded in a larger domain. Within...
journal article 2019
document
Krishnasamy, J. (author), Ponnusami, Sathiskumar A. (author), Turteltaub, S.R. (author), van der Zwaag, S. (author)
The performance of a self-healing Thermal Barrier Coating (TBC) containing dispersed healing particles depends crucially on the mismatch in thermomechanical properties between the healing particles and the TBC matrix. The present work systematically investigates this phenomenon based on numerical simulations using cohesive element-based finite...
journal article 2018
document
Turteltaub, S.R. (author), van Hoorn, Niels (author), Westbroek, Wim (author), Hirsch, C.W. (author)
A multiscale framework for the analysis of fracture is developed in order to determine the effective (homogenized) strength and fracture energy of a composite material based on the constituent's material properties and microstructural arrangement. The method is able to deal with general (mixed-mode) applied strains without a priori knowledge...
journal article 2018
Searched for: author%3A%22Turteltaub%2C+S.R.%22
(1 - 4 of 4)