Searched for: subject%3A%22Cement%255C+paste%22
(21 - 36 of 36)

Pages

document
Wang, Liquan (author), Liu, Ziyang (author), Xu, Shida (author), Ouyang, Xiaowei (author), Ouyang, Dong (author), Jiao, Chujie (author), Zhang, Y. (author)
The production of cement leads to a large amount of CO<sub>2</sub> emission. Using industrial waste slag, such as ceramic polishing powder (PP), to replace part of Portland cement can reduce the pollution caused by the cement industry and solid waste disposal. In order to use PP as a replacement for cement, its effects on the properties of...
journal article 2019
document
Zhang, H. (author), Šavija, B. (author), Schlangen, E. (author)
This work presents a study of stochastic fracture properties of cement paste at the micro length scale based on a combination of X-ray computed tomography (XCT) technique and discrete lattice type fracture model. Thirty virtual specimens consisting of pore, outer hydration products, inner hydration products and anhydrous cement particles were...
journal article 2018
document
Zhang, H. (author), Šavija, B. (author), Schlangen, E. (author)
The aim of this paper is to investigate the fracture performance of cement paste at micro scale by both experimental and numerical methods. Micro cubic specimens with length of 100 µm were fabricated by precision cutting, grinding and micro-dicing, and tested by splitting with a wedge tip mounted on a nano-indenter. A nominal splitting...
journal article 2018
document
Ouyang, X. (author), Pan, Z. (author), Qian, Zhiwei (author), Ma, Yuwei (author), Ye, G. (author)
The interface between filler and hydration products can have a significant effect on the mechanical properties of the cement paste system. With different adhesion properties between filler and hydration products, the effect of microstructural features (size, shape, surface roughness), particle distribution and area fraction of filler on the...
journal article 2018
document
Zhang, H. (author), Šavija, B. (author), Xu, Y. (author), Schlangen, E. (author)
Cement paste possesses complex microstructural features including defects/pores over a range of length-scales, from nanometres to millimetres in size. As a consequence, it exhibits different behaviour under loading depending on the size. In this work, cubic specimens in a size range of 1: 400 were produced and tested by a one-sided splitting...
journal article 2018
document
Gan, Y. (author), Zhang, H. (author), Šavija, B. (author), Schlangen, E. (author), van Breugel, K. (author)
Cement paste is the main binding component in concrete and thus its fundamental properties are of great significance for understanding the fracture behaviour as well as the ageing process of concrete. One major aim of this paper is to characterize the micromechanical properties of cement paste with the aid of a nanoindenter. Besides, this paper...
journal article 2018
document
Šavija, B. (author), Zhang, H. (author), Schlangen, E. (author)
Excessive cracking can be a serious durability problem for reinforced concrete structures. In recent years, addition of microencapsulated phase change materials (PCMs) to concrete has been proposed as a possible solution to crack formation related to temperature gradients. However, the addition of PCM microcapsules to cementitious materials...
journal article 2017
document
Huang, H. (author), Ye, G. (author)
The term “Time-zero”, i.e., the time for the start of autogenous shrinkage measurement, is usually used for estimating the cracking potential of structural components. Accurate determination of the “time-zero” is therefore critical for autogenous shrinkage measurement, which is the main objective of this study. There is a general agreement...
journal article 2017
document
Qian, Zhiwei (author), Schlangen, E. (author), Ye, G. (author), van Breugel, K. (author)
Multiscale modeling for cement-based materials, such as concrete, is a relatively young subject, but there are already a number of different approaches to study different aspects of these classical materials. In this paper, the parameter-passing multiscale modeling scheme is established and applied to address the multiscale modeling problem...
journal article 2017
document
Dong, H. (author), Gao, P. (author), Ye, G. (author)
More and more studies are based on digital microstructures of cement pastes obtained either by numerical modelling or by experiments. A comprehensive understanding of the their pore structures, therefore, becomes significant. In this study, the pore structure of a virtual cement paste (HYMO-1d) generated by cement hydration model HYMOSTRUC 3D...
journal article 2017
document
Huang, H. (author), Ye, G. (author), Pel, Leo (author)
The aim of this study is to investigate the effect of water migration from cracks into the bulk paste on autogenous self-healing. Nuclear magnetic resonance (NMR) technique was utilized to monitor water migration from cracks into the bulk paste during the process of autogenous self-healing. NMR results show that initially the water in the...
journal article 2016
document
Zhang, Q. (author), Ye, G. (author)
Portland cement paste is a multiphase compound mainly consisting of calcium-silicate-hydrate (CSH) gel, calcium hydroxide (CH) crystal, and unhydrated cement core. When cement paste is exposed to high temperature, the dehydration of cement paste leads to not only the decline in strength, but also the increased pore pressure in the paste. In this...
journal article 2012
document
Stroeven, P. (author), He, H. (author)
This paper presents some evidence of the impact of the Brazil nut effect (BNE) on concrete’s particulate structure on meso-level (aggregate) as well as on micro-level (cement paste). BNE is associated with long-range size segregation in particle mixtures due to vibration in slurry state of concrete, both near boundaries and in bulk. Presented...
journal article 2012
document
He, H. (author), Le, N.L.B. (author), Stroeven, P. (author)
Experimental approaches in concrete technology are time-consuming, laborious and thus expensive. Developments in computer facilities render possible nowadays realistically simulating the particulate structure and microstructure of cementitious materials. For that purpose, discrete element methods (DEM) are required because of more correctly...
journal article 2012
document
Zhang, Q. (author), Ye, G. (author)
When a concrete structure is exposed to high temperature, the mechanical damage and chemical transformation take place simultaneously, which will change the microstructure of material. On the other hand, the mechanical properties and transport properties depend on the development of microstructure of cement paste. In order to study the...
journal article 2011
document
Fennis, S.A.A.M. (author), Walraven, J.C. (author), Den Uijl, J.A. (author)
Ecological concrete can be designed by replacing cement with fillers. With low amounts of cement it becomes increasingly important to control the water demand of concrete mixtures. In this paper a cyclic design method based on particle packing is presented and evaluated on the basis of experiments on cement pastes combined with quartz powder....
journal article 2009
Searched for: subject%3A%22Cement%255C+paste%22
(21 - 36 of 36)

Pages