Searched for: subject%3A%22Digitalization%22
(1 - 4 of 4)
document
Kiene, G. (author), Overwater, R.W.J. (author), Catania, Alessandro (author), Gunaputi Sreenivasulu, A.M. (author), Bruschi, Paolo (author), Charbon-Iwasaki-Charbon, E. (author), Babaie, M. (author), Sebastiano, F. (author)
This article presents a two-times interleaved, loop-unrolled SAR analog-to-digital converter (ADC) operational from 300 down to 4.2 K. The 6-8-bit resolution and the sampling speed up to 1 GS/s are targeted at digitizing the multi-channel frequency-multiplexed input in a spin-qubit reflectometry readout for quantum computing. To optimize the...
journal article 2023
document
Overwater, R.W.J. (author), Babaie, M. (author), Sebastiano, F. (author)
Quantum error correction (QEC) is required in quantum computers to mitigate the effect of errors on physical qubits. When adopting a QEC scheme based on surface codes, error decoding is the most computationally expensive task in the classical electronic back-end. Decoders employing neural networks (NN) are well-suited for this task but their...
journal article 2022
document
van Dijk, J.P.G. (author), Patra, B (author), Pellerano, Stefano (author), Charbon-Iwasaki-Charbon, E. (author), Sebastiano, F. (author), Babaie, M. (author)
The design of a large-scale quantum computer requires co-optimization of both the quantum bits (qubits) and their control electronics. This work presents the first systematic design of such a controller to simultaneously and accurately manipulate the states of multiple spin qubits or transmons. By employing both analytical and simulation...
journal article 2020
document
Van DIjk, Jeroen Petrus Gerardus (author), Patra, B (author), Xue, X. (author), Samkharadze, Nodar (author), Corna, A. (author), Sammak, A. (author), Scappucci, G. (author), Veldhorst, M. (author), Vandersypen, L.M.K. (author), Charbon-Iwasaki-Charbon, E. (author), Babaie, M. (author), Sebastiano, F. (author)
Building a large-scale quantum computer requires the co-optimization of both the quantum bits (qubits) and their control electronics. By operating the CMOS control circuits at cryogenic temperatures (cryo-CMOS), and hence in close proximity to the cryogenic solid-state qubits, a compact quantum-computing system can be achieved, thus promising...
journal article 2020
Searched for: subject%3A%22Digitalization%22
(1 - 4 of 4)