Searched for: subject%3A%22Motion%22
(1 - 8 of 8)
document
Kockelkoren, Michiel (author)
In recent years, the deployment of ground-based mobile robots has gained more and more interest in various domains. In contrast to other types of mobile robots, legged robots can traverse irregular terrains, climb stairs, and step over obstacles. However, these unique properties intensify the energy demand and require highly advanced perception...
master thesis 2024
document
Trevisan, E. (author), Alonso-Mora, J. (author)
Motion planning for autonomous robots in dynamic environments poses numerous challenges due to uncertainties in the robot's dynamics and interaction with other agents. Sampling-based MPC approaches, such as Model Predictive Path Integral (MPPI) control, have shown promise in addressing these complex motion planning problems. However, the...
journal article 2024
document
Peters, L. (author), Bajcsy, Andrea (author), Chiu, Chih Yuan (author), Fridovich-Keil, David (author), Laine, Forrest (author), Ferranti, L. (author), Alonso-Mora, J. (author)
Contingency planning, wherein an agent generates a set of possible plans conditioned on the outcome of an uncertain event, is an increasingly popular way for robots to act under uncertainty. In this work we take a game-theoretic perspective on contingency planning, tailored to multi-agent scenarios in which a robot's actions impact the...
journal article 2024
document
van der Drift, Victor (author)
This thesis presents a comprehensive approach to integrating a trajectory planner and follower for autonomous vehicles (AVs) using model predictive contouring control (MPCC). The planner generates collision-free trajectories with a kinematic bicycle model, while the follower tracks them using a dynamic bicycle model with a smaller integration...
master thesis 2023
document
Chen, Zhe (author), Alonso-Mora, J. (author), Bai, X. (author), Harabor, Daniel Damir (author), Stuckey, Peter James (author)
Multi-agent Pickup and Delivery (MAPD) is a challenging industrial problem where a team of robots is tasked with transporting a set of tasks, each from an initial location and each to a specified target location. Appearing in the context of automated warehouse logistics and automated mail sortation, MAPD requires first deciding which robot is...
journal article 2021
document
de Groot, O.M. (author), Ferreira de Brito, B.F. (author), Ferranti, L. (author), Gavrila, D. (author), Alonso-Mora, J. (author)
We present an optimization-based method to plan the motion of an autonomous robot under the uncertainties associated with dynamic obstacles, such as humans. Our method bounds the marginal risk of collisions at each point in time by incorporating chance constraints into the planning problem. This problem is not suitable for online optimization...
journal article 2021
document
Zhu, H. (author), Martinez Claramunt, Francisco (author), Ferreira de Brito, B.F. (author), Alonso-Mora, J. (author)
This paper presents a data-driven decentralized trajectory optimization approach for multi-robot motion planning in dynamic environments. When navigating in a shared space, each robot needs accurate motion predictions of neighboring robots to achieve predictive collision avoidance. These motion predictions can be obtained among robots by...
journal article 2021
document
Bjelonic, Marko (author), Sekoor Lakshmana Sankar, Prajish (author), Dario Bellicoso, C. (author), Vallery, H. (author), Hutter, Marco (author)
Wheeled-legged robots have the potential for highly agile and versatile locomotion. The combination of legs and wheels might be a solution for any real-world application requiring rapid, and long-distance mobility skills on challenging terrain. In this paper, we present an online trajectory optimization framework for wheeled quadrupedal robots...
journal article 2020
Searched for: subject%3A%22Motion%22
(1 - 8 of 8)