Searched for: subject%3A%22Rejuvenation%22
(1 - 12 of 12)
document
Tabakovic, A. (author), Lemmens, Jeremy (author), Tamis, J. (author), van Vliet, Dave (author), Nahar, Sayeda (author), Suitela, Willem (author), van Loosdrecht, Mark C.M. (author), Leegwater, G.A. (author)
Bitumen is a key constitutive material in asphalt pavements. It binds together the rock scaffolding of a pavement. Bitumen provides asphalt pavement with flexibility and enables it to respond to traffic loading and return to its original condition after the loading, i.e. bitumen restores/repairs the damage. In Porous Asphalt (PA) or...
journal article 2023
document
Tabakovic, A. (author), van Vliet, Dave (author), Roetert-Steenbruggen, Kirsten (author), Leegwater, G.A. (author)
Bitumen rejuvenators are used to improve or restore the physical and mechanical performance of aged bitumen. Traditional bitumen rejuvenators are a product of crude oil. As crude oil production declines and the environmental and financial costs of crude oil increase, there is an urgent need to identify more environmentally sustainable bitumen...
journal article 2023
document
Tabakovic, A. (author)
The global road network spans 64.3million km and is of huge significance for the social and economic development. The level of investment in road construction and maintenance is high, e.g. EU €44billion/year (2019), China €614.7billion/year (2019) and US €94billion/year (2019). Despite the level of investment, there has been minimal...
journal article 2022
document
Tabakovic, A. (author), Mohan, Joseph (author), Karač, Aleksandar (author)
This paper explores the potential use of conductive alginate capsules encapsulating a bitumen rejuvenator as a new extrinsic self-healing asphalt method. The capsules combine two existing self-healing asphalt technologies: (1) rejuvenator encapsulation and (2) induction heating to create a self-healing system that will provide rapid and...
journal article 2021
document
Xu, S. (author), Liu, X. (author), Tabakovic, A. (author), Lin, P. (author), Zhang, Y. (author), Nahar, S. (author), Lommerts, B. J. (author), Schlangen, E. (author)
Rejuvenator encapsulation technique showed great potential for extrinsic asphalt pavement damage healing. Once the capsules are embedded within asphalt pavement, the healing is activated on-demand via progressing microcrack. When the microcrack encounters the capsule, the fracture energy at the tip opens the capsule and releases the...
journal article 2021
document
Tabakovic, A. (author), Schlangen, E. (author)
This paper presents a unique self-healing system for asphalt pavement which employs compartmented calcium-alginate fibres encapsulating an asphalt binder healing agent (rejuvenator). This system presents a novel method of incorporating rejuvenators into asphalt pavement mixtures. The compartmented fibres are used to distribute the rejuvenator...
book chapter 2020
document
Xu, S. (author), Tabakovic, A. (author), Liu, X. (author), Palin, D. (author), Schlangen, E. (author)
It has been demonstrated that calcium alginate capsules can be used as an asphalt healing system by pre-placing rejuvenator (healing agent) into the asphalt mix and releasing the rejuvenator on demand (upon cracking). This healing mechanism relies on the properties of capsules which are determined by the capsule preparation process. In this...
journal article 2019
document
Tabakovic, A. (author), Schlangen, E. (author)
This paper presents a unique self-healing system for asphalt pavement which employs compartmented calcium-alginate fibres encapsulating an asphalt binder healing agent (rejuvenator). This system presents a novel method of incorporating rejuvenators into asphalt pavement mixtures. The compartmented fibres are used to distribute the rejuvenator...
conference paper 2018
document
Xu, S. (author), Tabakovic, A. (author), Schlangen, E. (author), Liu, X. (author)
Researchers have demonstrated that the rejuvenator encapsulation method is a promising autonomic self-healing approach for asphalt pavements, where by the self-healing system improves the healing capacity of an asphalt pavement mix. However, potentially high environmental risk via leaching of hazardous chemicals such as melamine formaldehyde...
journal article 2018
document
Tabakovic, A. (author), Schuyffel, L.S. (author), Karač, Aleksandar (author), Schlangen, E. (author)
This paper explores the potential methods for evaluating a healing system for asphalt pavements. The healing system under investigation involves compartmented calcium-alginate fibres encapsulating an asphalt binder healing agent (rejuvenator). This system presents a novel method of incorporating rejuvenators into asphalt pavement mixtures....
journal article 2017
document
Tabakovic, A. (author), Braak, Dirk (author), van Gerwen, Mark (author), Copuroglu, Oguzhan (author), Post, W. (author), Garcia, Santiago J. (author), Schlangen, E. (author)
This article presents development of a novel self-healing technology for asphalt pavements, where asphalt binder rejuvenator is encapsulated within the compartmented alginate fibres. The key objective of the study was to optimise the compartmented alginate fibre design, i.e., maximising amount of rejuvenator encapsulated within the fibre. The...
journal article 2017
document
Tabakovic, A. (author), Post, W. (author), Cantero, D. (author), Copuroglu, Oguzhan (author), Garcia, Santiago J. (author), Schlangen, E. (author)
This paper explores the potential use of compartmented alginate fibres as a new method of incorporating rejuvenators into asphalt pavement mixtures. The compartmented fibres are employed to locally distribute the rejuvenator and to overcome the problems associated with spherical capsules and hollow fibres. The work presents proof of concept of...
journal article 2016
Searched for: subject%3A%22Rejuvenation%22
(1 - 12 of 12)